Case study: NMR shielding of UF3Cl3

In this tutorial we shall go through the calculation of NMR shieldings of the UF3Cl3 molecule using the scheme of simple magnetic balance (SMB) in conjunction with London orbitals [Olejniczak2012].

Preparing for the atomic start

To ensure a smooth convergence of the SCF calculation we employ an atomic start whereby an initial molecular density matrix is generated as the direct sum of atomic ones. We therefore have to perform a separate SCF calculation of each atomic type. At the moment the approach is somewhat cumbersome, but will be automatized in future versions of DIRAC. Each atom is calculated in maximal symmetry (linear symmery) and the coefficients then exported to C1 symmetry using the keyword .ACMOUT.

Uranium atom

We calculate the U+3 cation in the [Rn] 5f3 configuration. The input file UIII.inp reads

**DIRAC
.WAVE FUNCTION
.ANALYZE
**GENERAL
.ACMOUT
**HAMILTONIAN
.DFTAUTO
 PBE0
**INTEGRALS
*READIN
.UNCONTRACT
**WAVE FUNCTIONS
.SCF
*SCF
.CLOSED SHELL
 42 44
.OPEN SHELL
 1
 3/0,14
**ANALYZE
.MULPOP
*MULPOP
.VECPOP
 1..oo
 1..oo
*END OF

and the corresponding molecular input file U.mol is

DIRAC


C   1              A
       92.    1
U      0.0000000000        0.0000000000        0.0000000000
LARGE BASIS PNNLbas_h
FINISH

The minimal pam command is:

pam --inp=UIII.inp --mol=U.mol --get=DFACMO

We save the C1 coefficients and make a symbolic link for the atomic start:

mv DFACMO ac.UIII
ln -s ac.UIII DFUXXX

Fluorine atom

We calculate the fluorine atom in the [He] 2s2 2p5 ground state configuration using fractional occupation. The input file F.inp reads

**DIRAC
.WAVE FUNCTION
.ANALYZE
**GENERAL
.ACMOUT
**HAMILTONIAN
.DFTAUTO
 PBE0
**INTEGRALS
*READIN
.UNCONTRACT
**WAVE FUNCTIONS
.SCF
*SCF
.CLOSED SHELL
 4 0
.OPEN SHELL
 1
 5/0,6
**ANALYZE
.MULPOP
*MULPOP
.VECPOP
 1..oo
 1..oo
*END OF

and the corresponding molecular input file F.mol is

DIRAC


C   1              A
        9.    1
F      0.0000000000        0.0000000000        0.0000000000
LARGE BASIS IGLO-IIIunc
FINISH

The minimal pam command is:

pam --inp=F.inp --mol=F.mol --get=DFACMO

We save the C1 coefficients and make a symbolic link for the atomic start:

mv DFACMO ac.F
ln -s ac.F DFFXXX

Chlorine atom

We calculate the chlorine atom in the [Ne] 3s2 3p5 ground state configuration using fractional occupation. The input file Cl.inp reads

**DIRAC
.WAVE FUNCTION
.ANALYZE
**GENERAL
.ACMOUT
**HAMILTONIAN
.DFTAUTO
 PBE0
**INTEGRALS
*READIN
.UNCONTRACT
**WAVE FUNCTIONS
.SCF
*SCF
.CLOSED SHELL
 6 6
.OPEN SHELL
 1
 5/0,6
**ANALYZE
.MULPOP
*MULPOP
.VECPOP
 1..oo
 1..oo
*END OF

and the corresponding molecular input file Cl.mol is

DIRAC


C   1              A
       17.    1
Cl     0.0000000000        0.0000000000        0.0000000000
LARGE BASIS IGLO-IIIunc
FINISH

The minimal pam command is:

pam --inp=Cl.inp --mol=Cl.mol --get=DFACMO

We save the C1 coefficients and make a symbolic link for the atomic start:

mv DFACMO ac.Cl
ln -s ac.Cl DFCLXX

Initial SCF calculation

Atomic Hartree–Fock start

In this case the atomic start at the PBE0 level did not converge. It is then recommend to proceed via a Hartree–Fock calculation where the HOMO-LUMO gap is larger. The HF menu file SCFatom.inp reads

**DIRAC
.WAVE FUNC
**INTEGRALS
*READIN
.UNCONT
**HAMILTONIAN
.DFTAUTO
 PBE0
**WAVE FUN
.SCF
*SCF
.CLOSED SHELL
 170
.ATOMST
DFUXXX 2
1..43
1.00
44..50
0.214
DFCLXX 2
1..6
1.00
7..9
0.833
DFFXXX 2
1,2
1.00
3..5
0.83
**END OF

For the atomic start it can be noted that orbitals 1 through 43 of the uranium atom are fully occupied whereas the 5f orbitals (44 through 50) are given an fractional occupation of 3/14.

The corresponding molecular file UF3Cl3.mol reads

DIRAC


C   3              A
       92.    1
U      0.0000000000        0.0000000000        0.0000000000
LARGE BASIS PNNLbas_h
       17.    3
Cl1  0.000000  2.485723  0.152014
Cl2  0.000000 -2.485723  0.152014
Cl3  0.000000  0.000000 -2.343092
LARGE BASIS IGLO-IIIunc
        9.    3
F1   2.001913  0.000000  0.142067
F2   0.000000  0.000000  2.143315
F3  -2.001913  0.000000  0.142067
LARGE BASIS IGLO-IIIunc
FINISH

The minimal pam command is:

pam --mol=UF3Cl3.mol --inp=SCFatom.inp --outcmo --copy="DFUXXX DFCLXX DFFXXX"

(I also added –mw=120 as well as –mpi=24)

Initial PBE0 run with restricted kinetic balance

Having good start vectors I next ran the PBE0 SCF calculation using the input SCF.inp:

**DIRAC
.WAVE FUNC
**INTEGRALS
*READIN
.UNCONT
**HAMILTONIAN
.DFTAUTO
 PBE0
**GRID
.ATSIZE
.ULTRAFINE
**WAVE FUN
.SCF
*SCF
.CLOSED SHELL
 170
.MAXITR
 20
.OVLSEL
.NODYNSEL
.LSHIFT
 0.2
**END OF

I am running with a level shift of 0.2 hartree as well as static overlap selection to ensure convergence. I also use the keyword .ATSIZE to determine the partitioning of the molecular volume into atomic ones. The minimal pam command reads:

pam --inp=SCF.inp --mol=UF3Cl3.mol --incmo --outcmo

This calculations converges smoothly in 20 iterations to:

                                TOTAL ENERGY
                                ------------

Electronic energy                        :    -31794.704487527993

Other contributions to the total energy

Nuclear repulsion energy                 :      2038.659981883082
SS Coulombic correction                  :         0.007588768574

Sum of all contributions to the energy

Total energy                             :    -29756.036916876335

Property calculation using London orbitals and simple magnetic balance

Starting from the RKB coefficients we proceed to the actual calculation of NMR parameters using simple magnetic balance and London orbitals. The input file NMR.inp reads

**DIRAC
.PROPERTIES
**GENERAL
.RKBIMP
**INTEGRALS
*READIN
.UNCONT
**HAMILTONIAN
.URKBAL
.DFTAUTO
 PBE0
**GRID
.ATSIZE
.ULTRAFINE
**WAVE FUN
.SCF
*SCF
.CLOSED SHELL
 170
**PROPERTIES
.PRINT
 2
.SHIELDING
*NMR
.LONDON
**END OF

This calculations gives:

@            isotropic shielding
@        ----------------------------
@atom          total          dia         para            skew            span            anis            asym
@----------------------------------------------------------------------------
@U         -5418.3074      288.0612    -5706.3685       -0.1585    13571.5391     9641.0019        1.2231
@Cl1  1    -1023.9194       67.4482    -1091.3676        0.8381     2875.6960     2759.3185        0.1265
@Cl1  2    -1023.9194       67.4482    -1091.3676        0.8381     2875.6960     2759.3185        0.1265
@Cl3        -885.2205       85.8218     -971.0423        0.7133     2705.2946     2511.3830        0.2316
@F1   1     -690.9071      103.1746     -794.0817        0.8742     1380.6609     1337.2555        0.0974
@F1   2     -690.9071      103.1746     -794.0817        0.8742     1380.6609     1337.2555        0.0974
@F2         -787.3430       84.2708     -871.6137        0.7175     1704.0367     1583.6803        0.2280
@----------------------------------------------------------------------------