:orphan: =================================== Case study: NMR shielding of UF3Cl3 =================================== In this tutorial we shall go through the calculation of NMR shieldings of the UF3Cl3 molecule using the scheme of simple magnetic balance (SMB) in conjunction with London orbitals :cite:`Olejniczak2012`. Preparing for the atomic start ============================== To ensure a smooth convergence of the SCF calculation we employ an atomic start whereby an initial molecular density matrix is generated as the direct sum of atomic ones. We therefore have to perform a separate SCF calculation of each atomic type. At the moment the approach is somewhat cumbersome, but will be automatized in future versions of DIRAC. Each atom is calculated in maximal symmetry (linear symmery) and the coefficients then exported to C1 symmetry using the keyword :ref:`GENERAL_.ACMOUT`. Uranium atom ------------ We calculate the U+3 cation in the [Rn] 5f3 configuration. The input file ``UIII.inp`` reads .. literalinclude:: UIII.inp and the corresponding molecular input file ``U.mol`` is .. literalinclude:: U.mol The minimal pam command is:: pam --inp=UIII.inp --mol=U.mol --get=DFACMO We save the C1 coefficients and make a symbolic link for the atomic start:: mv DFACMO ac.UIII ln -s ac.UIII DFUXXX Fluorine atom ------------- We calculate the fluorine atom in the [He] 2s2 2p5 ground state configuration using fractional occupation. The input file ``F.inp`` reads .. literalinclude:: F.inp and the corresponding molecular input file ``F.mol`` is .. literalinclude:: F.mol The minimal pam command is:: pam --inp=F.inp --mol=F.mol --get=DFACMO We save the C1 coefficients and make a symbolic link for the atomic start:: mv DFACMO ac.F ln -s ac.F DFFXXX Chlorine atom ------------- We calculate the chlorine atom in the [Ne] 3s2 3p5 ground state configuration using fractional occupation. The input file ``Cl.inp`` reads .. literalinclude:: Cl.inp and the corresponding molecular input file ``Cl.mol`` is .. literalinclude:: Cl.mol The minimal pam command is:: pam --inp=Cl.inp --mol=Cl.mol --get=DFACMO We save the C1 coefficients and make a symbolic link for the atomic start:: mv DFACMO ac.Cl ln -s ac.Cl DFCLXX Initial SCF calculation ======================= Atomic Hartree--Fock start -------------------------- In this case the atomic start at the PBE0 level did not converge. It is then recommend to proceed via a Hartree--Fock calculation where the HOMO-LUMO gap is larger. The HF menu file ``SCFatom.inp`` reads .. literalinclude:: SCFatom.inp For the atomic start it can be noted that orbitals 1 through 43 of the uranium atom are fully occupied whereas the 5f orbitals (44 through 50) are given an fractional occupation of 3/14. The corresponding molecular file ``UF3Cl3.mol`` reads .. literalinclude:: UF3Cl3.mol The minimal pam command is:: pam --mol=UF3Cl3.mol --inp=SCFatom.inp --outcmo --copy="DFUXXX DFCLXX DFFXXX" (I also added --mw=120 as well as --mpi=24) Initial PBE0 run with restricted kinetic balance ------------------------------------------------ Having good start vectors I next ran the PBE0 SCF calculation using the input ``SCF.inp``: .. literalinclude:: SCF.inp I am running with a level shift of 0.2 hartree as well as static overlap selection to ensure convergence. I also use the keyword :ref:`GRID_.ATSIZE` to determine the partitioning of the molecular volume into atomic ones. The minimal pam command reads:: pam --inp=SCF.inp --mol=UF3Cl3.mol --incmo --outcmo This calculations converges smoothly in 20 iterations to:: TOTAL ENERGY ------------ Electronic energy : -31794.704487527993 Other contributions to the total energy Nuclear repulsion energy : 2038.659981883082 SS Coulombic correction : 0.007588768574 Sum of all contributions to the energy Total energy : -29756.036916876335 Property calculation using London orbitals and simple magnetic balance ====================================================================== Starting from the RKB coefficients we proceed to the actual calculation of NMR parameters using simple magnetic balance and London orbitals. The input file ``NMR.inp`` reads .. literalinclude:: NMR.inp This calculations gives:: @ isotropic shielding @ ---------------------------- @atom total dia para skew span anis asym @---------------------------------------------------------------------------- @U -5418.3074 288.0612 -5706.3685 -0.1585 13571.5391 9641.0019 1.2231 @Cl1 1 -1023.9194 67.4482 -1091.3676 0.8381 2875.6960 2759.3185 0.1265 @Cl1 2 -1023.9194 67.4482 -1091.3676 0.8381 2875.6960 2759.3185 0.1265 @Cl3 -885.2205 85.8218 -971.0423 0.7133 2705.2946 2511.3830 0.2316 @F1 1 -690.9071 103.1746 -794.0817 0.8742 1380.6609 1337.2555 0.0974 @F1 2 -690.9071 103.1746 -794.0817 0.8742 1380.6609 1337.2555 0.0974 @F2 -787.3430 84.2708 -871.6137 0.7175 1704.0367 1583.6803 0.2280 @----------------------------------------------------------------------------