User Tools

Site Tools


publications

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
publications [2026/01/30 08:56] – [2022] erik.hedegard_teokem.lu.sepublications [2026/01/30 16:56] (current) aspg
Line 1: Line 1:
 ===== Publications related to DIRAC development ===== ===== Publications related to DIRAC development =====
 +
 +==== 2026 ====
 +
 +    * J. Brandejs, N. Hörnblad, E. F. Valeev, A. Heinecke, J. Hammond, D. Matthews, P. Bientinesi,  // Tensor Algebra Processing Primitives (TAPP): Towards a Standard for Tensor Operations // arXiv:2601.07827 (2026) [[https://arxiv.org/abs/2601.07827|online]]
 +
  
 ==== 2025 ==== ==== 2025 ====
Line 9: Line 14:
     * E. D. Larsson, P. Reinholdt, J. Kongsted, E. D. Hedegård // Exact Two-Component Relativistic Polarizable Density Embedding // J. Chem. Theor. Comp., 21 9, 4447–4457 (2025) [[https://pubs.acs.org/doi/abs/10.1021/acs.jctc.5c00014|online]]     * E. D. Larsson, P. Reinholdt, J. Kongsted, E. D. Hedegård // Exact Two-Component Relativistic Polarizable Density Embedding // J. Chem. Theor. Comp., 21 9, 4447–4457 (2025) [[https://pubs.acs.org/doi/abs/10.1021/acs.jctc.5c00014|online]]
  
 +    * L. Halbert, A. S. P. Gomes,// The performance of approximate equation of motion coupled cluster for valence and core states of heavy element systems // Mol. Phys. 123 5-6, e2246592 (2025) [[https://doi.org/10.1080/00268976.2023.2246592|online]]
 ==== 2024 ==== ==== 2024 ====
  
Line 20: Line 25:
  
     * X. Yuan, L. Halbert, L. Visscher, A. S. P. Gomes,// Frequency-Dependent Quadratic Response Properties and Two-Photon Absorption from Relativistic Equation-of-Motion Coupled Cluster Theory // J. Chem. Theor. Comp. 19, 9248-9259 (2023) [[https://doi.org/10.1021/acs.jctc.3c01011|online]]     * X. Yuan, L. Halbert, L. Visscher, A. S. P. Gomes,// Frequency-Dependent Quadratic Response Properties and Two-Photon Absorption from Relativistic Equation-of-Motion Coupled Cluster Theory // J. Chem. Theor. Comp. 19, 9248-9259 (2023) [[https://doi.org/10.1021/acs.jctc.3c01011|online]]
 +
 +    * J. Creutzberg, E. D. Hedegård, // A method to capture the large relativistic and solvent effects on the UV-vis spectra of photo-activated metal complexes // Phys. Chem. Chem. Phys. 25 8, 6153-6163 (2023) [[https://pubs.rsc.org/en/content/articlehtml/2023/cp/d2cp04937f|online]]
 +
  
  
Line 39: Line 47:
     * J. V. Pototschnig, A. Papadopoulos, D. Lyakh, M. Repisky, L. Halbert, A. S. P. Gomes, H. J. Aa. Jensen, L. Visscher, // Implementation of Relativistic Coupled Cluster Theory for Massively Parallel GPU-Accelerated Computing Architectures // J. Chem. Theor. Comp. 17, 5509-5529 (2021) [[https://doi.org/10.1021/acs.jctc.1c00260|online]]     * J. V. Pototschnig, A. Papadopoulos, D. Lyakh, M. Repisky, L. Halbert, A. S. P. Gomes, H. J. Aa. Jensen, L. Visscher, // Implementation of Relativistic Coupled Cluster Theory for Massively Parallel GPU-Accelerated Computing Architectures // J. Chem. Theor. Comp. 17, 5509-5529 (2021) [[https://doi.org/10.1021/acs.jctc.1c00260|online]]
  
 +    * L. Halbert, M. L. Vidal, A. Shee, S. Coriani, A. S. P. Gomes, //Relativistic EOM-CCSD for Core-Excited and Core-Ionized State Energies Based on the Four-Component Dirac–Coulomb(−Gaunt) Hamiltonian //  J. Chem. Theor. Comp. 17 6, 3583 (2021) [[https://doi.org/10.1021/acs.jctc.0c01203|online]]
 ==== 2020 ==== ==== 2020 ====
  
     * T. Saue, R. Bast, A. S. P. Gomes, H. J. Aa. Jensen, L. Visscher, et al. // The DIRAC code for relativistic molecular calculations // J. Chem. Phys. 152, 204104 (2020) [[https://doi.org/10.1063/5.0004844|online]]     * T. Saue, R. Bast, A. S. P. Gomes, H. J. Aa. Jensen, L. Visscher, et al. // The DIRAC code for relativistic molecular calculations // J. Chem. Phys. 152, 204104 (2020) [[https://doi.org/10.1063/5.0004844|online]]
- 
  
  
Line 50: Line 57:
  
     * S. Lehtola, L. Visscher, E. Engel // Efficient implementation of the superposition of atomic potentials initial guess for electronic structure calculations in Gaussian basis sets// J. Chem. Phys. 152, 144105 (2020) [[https://doi.org/10.1063/5.0004046|online]]     * S. Lehtola, L. Visscher, E. Engel // Efficient implementation of the superposition of atomic potentials initial guess for electronic structure calculations in Gaussian basis sets// J. Chem. Phys. 152, 144105 (2020) [[https://doi.org/10.1063/5.0004046|online]]
 +
 +    * J. Creutzberg, E. D. Hedegård // Investigating the influence of relativistic effects on absorption spectra for platinum complexes with light-activated activity against cancer cells// Phys. Chem. Chem. Phys. 22 46, 27013-27023 (2020) [[https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp05143h|online]]
  
  
Line 71: Line 80:
     * E. D. Hedegård, R. Bast, J. Kongsted, J. M. H. Olsen, and H. J. Aa. Jensen, //Relativistic Polarizable Embedding//. J. Chem. Theory Comput. 13, 2870–2880 (2017) [[http://doi.org/10.1021/acs.jctc.7b00162|online]]     * E. D. Hedegård, R. Bast, J. Kongsted, J. M. H. Olsen, and H. J. Aa. Jensen, //Relativistic Polarizable Embedding//. J. Chem. Theory Comput. 13, 2870–2880 (2017) [[http://doi.org/10.1021/acs.jctc.7b00162|online]]
  
 +    * M. Olejniczak, R. Bast, A. S. P. Gomes, //On the calculation of second-order magnetic properties using subsystem approaches in a relativistic framework//. Phys. Chem. Chem. Phys. 19, 8400 (2017) [[http://doi.org/10.1039/C6CP08561J|online]]
 ==== 2016 ==== ==== 2016 ====
  
publications.1769763371.txt.gz · Last modified: 2026/01/30 08:56 by erik.hedegard_teokem.lu.se

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki