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Functional theory and its coupling to wave function theory.
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Chapter 1

Abstract

With the rapidly increasing computer power and the almost equally rapid
decrease in hardware costs, it can seem strange to some that such big efforts
are put into making efficient models for describing atoms and molecules by
means of computers. Moore’s law has surprisingly well predicted that since
1970 the computer power has been doubled every 18 months. It could seem
that the fast increase in computer power would satisfy our needs for doing
calculations on larger and larger systems with higher and higher accuracy,
but this is unfortunately not the case. One needs to know that even though
the techniques are known to treat atoms and molecules with as high quality
as needed these models scale tremendously bad with system size (≈ O(N7)),
N being a measure of the system size. So even if we just double the system
size we would have to wait some years for the computer power to increase
enough to compensate (101

2
years). Therefore our wish to accurately treat

larger and larger systems makes the search for efficient and computationally
inexpensive methods very relevant.

The main goals of my Ph.D studies have been to investigate less computa-
tionally expensive alternatives to the standard ways of performing quantum
chemical calculations accounting for both electron correlation and relativistic
effects. Under normal circumstances both these effects have relatively little
influence on the total energy, both can nevertheless not be neglected when
high accuracy is needed. At the end of this thesis it should be clear that the
nature both correlation and relativity allows us to treat them is a much more
efficient way than described by the standard computational methods without
loosing control of how our approximations affect the energy or property in
question.

The first chapter will briefly review the history of applied quantum chem-
istry and thereby define electron correlation and introduce the standard meth-

1



2 Chapter 1 Abstract

ods for accounting for correlation.

The second chapter will describe the investigations done on an approxi-
mate way of introducing efficient treatment of electron correlation in other-
wise dynamically uncorrelated wave functions.

Chapter four will present the wave function DFT hybrid method that suc-
cesfully present and effecient way of dealing with both static and dynamic
correlation.

In chapter five a complete different topic will be discussed. Namely rel-
ativistic effects and how to reduce the computational cost of 4-component
methods without loosing accuracy.

Finally some concluding remarks and an outlook on future research will
be given.



Part I

The standard Methods.
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Chapter 2

Introduction

The task of Quantum Chemistry can be summarized to striking simplicity.
Finding a solution to the eigenvalue problem (the Schrödinger equation [1])

ĤΨ = EΨ (2.0.1)

To a very good approximation the Born-Oppenheimer approximation [2] can
be applied to reduce this to a purely electronic problem leaving us with the
following non-relativistic n-electron Hamiltonian (Ĥe) for N nuclei

Ĥe = −1
2

n∑
i

∇2
i +

N∑
A<B

ZAZB

RAB

−
n∑
i

N∑
A

ZA

riA

+
n∑

i<j

1

rij

(2.0.2)

The great disappointment is that even after having reduced this to an elec-
tronic problem the simple looking eigenvalue equation (2.0.1) can only be
solved analytically for one-electron systems, greatly limiting the usefulness.
This is where the standard Quantum Chemical methods come into play. If we
cannot find an analytical solution, providing us with the true wave function
of the system (Ψ), we can try to find a good approximation to it. This has
become the goal of most Quantum Chemical research and since the birth of
Quantum Chemistry this has spawned a hierarchy of methods.

Any introduction to the methods of quantum chemistry would have to
take its starting point in the Hartree-Fock (HF) method. The HF can be
considered a branching point in quantum chemistry. Further approximations
lead to the semi-empirical methods while improvements to the HF method of
the description of the correlated motion of electrons, lead to the correlated ab
initio methods, like the Møller Plesset (MP), the Coupled Cluster (CC) per-
turbation approaches, the variational Configuration Interaction (CI) method
and the Multi-configurational Self Consistent Field (MCSCF) method. An

4



5

understanding of what the HF method does and does not include in its de-
scription of atoms and molecules lets us understand the concepts of static
and dynamic correlation. The following sections deal with these topics.



Chapter 3

The Single Determinant
Ansatz.

One of the earliest attempt to achieve an approximation for the wave function
was to form the Ψ from a simple product of orthonormal molecular orbitals
(MOs) or spin orbitals (χi)

1

Ψ = χ1(x1)χ2(x2) · · ·χN(xN) (3.0.1)

In this, the Hartree approximation [3–5], the electrons move independently
of each other, or said in a different way the movement of the electrons is
completely uncorrelated. It was quickly realized that the Hartree approach
was invalid in the sense that it does not satisfy the Pauli Exclusion Principle
which states that since electrons are indistinguishable from each other : the
wave function must be antisymmetric with respect to electron interchange. In
1930 Fock [6] showed that the Hartree product could be made antisymmet-
ric by appropriately adding and subtracting all possible permutation of the
Hartree product, and later Slater [7, 8] showed that the resulting antisym-
metric wave function could be described by a Slater determinant.

Ψ =

(
1

N !

) 1
2

∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)
χ1(x2) χ2(x2) · · · χN(x2)
χ1(x3) χ2(x3) · · · χN(x3)

...
...

...
χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣

(3.0.2)

1A spin-orbital is a function χ(x), constructed as the product of a function of space
and a function of spin : χ(x) = φ(r)

(
α
β

)
. In this notation the coordinate x contains the

coordinates of both space and spin.

6



3.1 The Correlation Energy. 7

From the properties of determinants we know that interchanging two columns
(changing the electron label) changes the sign of the determinant. Further-
more if two columns are identical the determinant vanishes and therefore
with the Slater determinantal ansatz for the wave function no two electrons
with equal spin can occupy the same spatial orbital.

Variationally determining the optimal set of MO coefficient that minimize
the electronic energy (Ee = 〈Ψ|He|Ψ〉

〈Ψ|Ψ〉 ) under the constraint that the orbitals
are kept orthonormal, yields the Hartree-Fock approach.

3.1 The Correlation Energy.

To be able to analyze this single determinant approach further the density is
introduced. For this purpose it is convenient to introduced the generalized 1
and 2 electron density matrices

ρ1(x1;x
′
1) = N

∫
Ψ(x1,x2, . . . ,xN)Ψ∗(x

′
1,x2, . . . ,xN)dx2 . . . dxN (3.1.3)

ρ2(x1,x2;x
′
1,x

′
2) = N(N − 1)

∫
Ψ(x1,x2, . . . ,xN)Ψ∗(x

′
1,x

′
2, . . . ,xN)dx3 . . . dxN

(3.1.4)

In the special case where Ψ is a single determinant wave function (3.0.2) the
density matrices are particularly simple.

ρ1(x1;x
′
1) =

∑

i (occ)

χi(x1)χi(x
′
1) (3.1.5)

ρ2(x1,x2;x
′
1,x

′
2) =

∑
i,j

[
χi(x1)χj(x2)χ

∗
i (x

′
1)χ

∗
j(x

′
2)

− χi(x2)χj(x1)χ
∗
i (x

′
1)χ

∗
j(x

′
2)

]

= ρ(x1;x
′
1)ρ(x2;x

′
2)− ρ(x2;x

′
1)ρ(x1;x

′
2) (3.1.6)

To be able to analyze the Hartree-Fock density the spin components are
written explicitly

ρ1(x1;x
′
1) = ρα

1 (r1; r
′
1)α(s1)α

∗(s
′
1) + ρβ

1 (r1; r
′
1)β(s1)β

∗(s
′
1)

(3.1.7)

ρ2(x1,x2;x
′
1,x

′
2) = ραα

2 (r1, r2; r
′
1, r

′
2)α(s1)α(s2)α

∗(s
′
1)α

∗(s
′
2) +

ραβ
2 (r1, r2; r

′
1, r

′
2)α(s1)β(s2)α

∗(s
′
1)β

∗(s
′
2) +

ρβα
2 (r1, r2; r

′
1, r

′
2)β(s1)α(s2)β

∗(s
′
1)α

∗(s
′
2) +

ρββ
2 (r1, r2; r

′
1, r

′
2)β(s1)β(s2)β

∗(s
′
1)β

∗(s
′
2) (3.1.8)
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Inserting (3.1.7) in (3.1.6) we can pick out the αα and αβ parts from (3.1.8).

ραα
2 (r1, r2; r

′
1, r

′
2) = ρα

1 (r1; r
′
1)ρ

α
1 (r2; r

′
2)− ρα

1 (r2; r1)ρ
α
1 (r1; r2) (3.1.9)

ραβ
2 (r1, r2; r

′
1, r

′
2) = ρα

1 (r1; r
′
1)ρ

β
1 (r2; r

′
2) (3.1.10)

From ραα
2 and ραβ

2 we can identify how electrons of equal and opposite spin
are treated in one-determinant wave functions. The ραα

2 term consists of
the product of the α one-electron densities at r1 and r2 respectively, but
this product is reduced by the ‘off-diagonal’ elements of the α-part of the
two-electron density matrix. In the limit r2 → r1 the terms cancel meaning
the two electron have zero probability of coinciding. The one-determinant
wave function, and antisymmetric wave functions in general, hence account
for Fermi correlation. The ραβ

2 term however is a simple product of the one
electron densities and so the event that a volume element is taken up by two
electrons of opposite spin is everywhere just the product of the probabilities
that the volume element is taken up by each of the electrons without refer-
ence to each other. Therefore electrons of different spin are not correlated
in the HF-model, and this is clearly a defect of the one-determinant wave
function since particles with equal-signed charges repel each other. In other
words the HF model does not predict a Coulomb hole around the electrons.
The situation is schematically shown in fig 3.1.1 where the drop in density is

r   = 0
12

r   = 0
12

ρ
2
αα

Coulomb−hole

HF

ρ
2
αβ

exact

Fermi−hole

HF

Figure 3.1.1: αα- and αβ-part of ρ2 shown schematically in the neighborhood of
a fixed electron, for an exact wave function and a one-determinant wave function

shown in the neighborhood of a fixed electron. The first figure shows how the
Fermi-correlation introduces a hole around the fixed electron, the Fermi-hole.
With the electrons having opposite spin the density is unaffected by the inter
electronic distance becoming small in the HF-model, whether as the exact
wave function has a Coulomb-hole around the fixed electron.

By its deficiencies the single determinant ansatz defines correlation. Usu-
ally the correlation energy is defined as

Ec = Eexact,non.rel. − EHF (3.1.11)
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This definition can however be a bit misleading since the antisymmetric single
determinant wave function already includes some correlation of electrons with
opposite spin - theFermi correlation. This correlation is therefore sometimes
also referred to as the pre-correlation energy. This energy is brought on
purely by the Pauli-exclusion principle and is also called the exchange energy.
It cancels the classical Coulomb, or Hartree, energy for isolated electrons
meaning that the HF model is self-interaction free. A property that is lost
if the HF exchange is replaced by approximate exchange terms as in Density
Functional Theory (DFT, see Sec.4.5).
The Fermi hole of the single determinant wave function is however only an
approximation for the true Fermi hole and Ec can therefore not entirely be
related to the missing Coulomb hole of the HF approach. Without reference
to spin we therefore define dynamical correlation as the correlated motion
of closely interaction electrons. For a simple system like He the HF model
therefore only lacks dynamical correlation.

A completely different type of correlation arises from the fact that in
many applications a single determinant is not sufficient for giving a qualita-
tively correct description of the system in question. Effects like degeneracy
or near degeneracy, curve crossing and qualitatively wrong dissociation are
collectively denoted non-dynamical correlation or static correlation. Classical
examples for which the one-determinant wave function is a bad choice are Be,
and H2. In the former, the near degeneracy of the 2s and 2p orbitals makes
it wrong to designate the ground state as a single determinant, in the latter,
the neglect of the contribution to the wave function of the σu-orbital in the
HF-model, makes the H2-molecule dissociate in equal amounts of ionic and
covalent terms : H+H− and H•H•. Unfortunately it is impossible to separate
the two types of correlation from each other. Methods that address static
correlation will inevitably include some dynamic correlation. An important
difference between the two types of correlation is that while dynamical corre-
lation is extremely difficult to describe with high precision, static correlation
effects can fairly easy be recovered.

The same way dynamic correlation can be associated with short range
electronic interaction we can associate static correlation with long range in-
teractions. This classification is very useful and will form the basis for the
approximate approaches to correlation of parts II and III of this thesis.
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3.2 Correlation Holes. The Coulomb Cusp.

The Fermi and Coulomb holes can conveniently be defined from the two elec-
tron density (ρ2(x1,x2)) of Eq. 3.1.4. As seen for a single determinant wave
function (3.1.9), ρ2 can be written as the product of the one electron den-
sities minus the product of the off diagonal elements of the reduced density
matrix. More general it can be written

ραα
2 (r1, r2) = ρα

1 (r1)ρ
α
1 (r2)[1 + hαα(r1, r2)] (3.2.1)

ραβ
2 (r1, r2) = ρα

1 (r1)ρ
β
1 (r2)[1 + hαβ(r1, r2)] (3.2.2)

whereby the Fermi (hαα) and Coulomb (hαβ) hole functions have been de-
fined. In the HF case ρα

1 (r1)ρ
α
1 (r2)h

αα(r1, r2) is approximated by
−ρα

1 (r2; r1)ρ
α
1 (r1; r2) while hαβ(r1, r2) is zero.

The Fermi, or exchange hole is now defined as

ραα
x (r1, r2) = ρα

1 (r1)h
αα(r1, r2) =

ραα
2 (r1, r2)

ρα
1 (r2)

− ρα
1 (r1) (3.2.3)

and integrates to ∫
ραα

x (r1, r2)dr2 = −1 (3.2.4)

The Coulomb hole is defined as

ραβ
c (r1, r2) = ρα

1 (r1)h
αβ(r1, r2) =

ραβ
2 (r1, r2)

ρβ
1 (r2)

− ρα
1 (r1) (3.2.5)

and integrates to ∫
ραβ

c (r1, r2)dr2 = 0 (3.2.6)

We could have defined the total exchange correlation hole likewise

ρxc(r1, r2) = ρ1(r1)hxc(r1, r2) =
ρ2(r1, r2)

ρ1(r2)
− ρ1(r1) (3.2.7)

which will then integrate up to -1 like the exchange hole. The repulsion
between the density and the exchange-correlation hole (Exc)

Exc =
1

2

∫∫
ρ1(r1)ρxc(r1, r2)

r12

dr1dr2 (3.2.8)

will together with the classical Coulomb (Hartree) energy

J =
1

2

∫∫
ρ1(r1)ρ1(r2)

r12

dr1dr2 (3.2.9)
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add up to the exact two electron repulsion energy (Vee = J + Exc).
Had we known the exact exchange-correlation hole function we could there-
fore solve the Schrödinger equation exact. The task of Quantum Chemists
is therefore to approximate the exchange-correlation hole function. This
viewpoint is directly transferable to DFT but of course also holds for wave
function based methods.

The difficulty in approximating the the exchange-correlation hole lies in
its shape for small interelectronic distances (as sketched on fig.3.1.1). From
the non-relativistic Hamiltonian (2.0.2) its clear that this operator has singu-
larities both in the nuclear attraction operator (for riA) and in the Coulomb
operator (for ri = rj). For the exact solution to the Schrödinger equation
these singularities have to be balanced by Ψ. This requirement on Ψ can be
formulated at the nuclear and Coulomb cusp condition [9].

lim
riA→0

(
∂Ψ

∂riA

)

sp.ave

= −ZAΨ(riA = 0) (3.2.10)

lim
rij→0

(
∂Ψ

∂rij

)

sp.ave

=
1

2
Ψ(rij = 0) (3.2.11)

where a spherical averaging is performed. The typical procedure in ab ini-
tio methods is to expand the wave function in simple analytical functions,
centered at the nucleus (atomic orbitals). It is therefore up to these atomic
orbital to make the total wave function obey the nuclear cusp condition,
and the Slater Type Orbitals (STOs) achieve that. This is not the case for
the more common choice, the Gaussian Type Orbitals (GTOs), that have
a squared riA-dependence. Suitable linear combinations do however succeed
to a satisfactory level, and the ease with which integrals over Gaussian type
functions can be evaluated analytically (see appendix A.1), gives a compu-
tational advantage, greater than the disadvantage of having to use a larger
number of functions.
The Coulomb cusp condition has more serious consequences. It states that
the Coulomb hole should have a cusp at the points of coalescence and should
increase linearly in whatever direction one moves from the point rij = 0
(again as illustrated on fig.3.1.1). The following sections introduces ways of
modeling this complex situation.



Chapter 4

Post HF Methods

The previous sections dealt with the deficiencies of the single determinant
ansatz for the approximate wave function. It is in order to comment on
the accuracy of the HF method before claiming that post-HF methods are
needed. While the energy gained from going from the simple product (Hartree)
wave function to the HF wave function (the exchange energy) is relatively
large the HF energy typically account for something like 99% of the total
energy. The remaining energy being the correlation energy (3.1.11). How
small an energy contribution the correlation energy is the total ground state
energy and be decomposed in energy contributions corresponding to the op-
erators that make up the non-relativistic Hamiltonian (2.0.2). E. Clementi
and G. Corongiu [10] have made this decomposition for atoms with nuclear
charges Z=1,54 and fitted the energy contributions to simple expressions of
the form E = aZb with a, b given below. Here I mention the fits for Ecoul, Ex

and Ec energies.

Ecoul a = 0.33781 b = 2.27092 %err = 2.89
Ex a = -0.27874 b = 1.62198 %err = 1.19
Ec a = -0.01696 b = 1.31023 %err = 7.78

These fits are seen plotted in fig.4.0.1 It is clear that even though signifi-
cantly smaller than the Coulomb energy, the exchange makes a considerable
contribution to the total energy. On the other hand the correlation energy
is not even visible on the main graph and only barely visible on the inlay
graph. The correlation energy could seem a negligible contribution to the
total energy. In some applications this is the case and for example HF often
gives good estimates of equilibrium geometries, though slightly over binding
molecules. If however high, or even medium accuracy is required the cor-
relation energy cannot be ignored and one has to resort to more advanced
methods. As a final comment to fig.4.0.1 it should be noted that the ex-

12
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Figure 4.0.1: Coulomb, Exchange and Correlation energies of the ground
state of atoms with nuclear charge Z=1,50

change and correlation energy is not only different in magnitude but also in
nature clearly having different Z dependence.

That correlation presents such a small perturbation to the HF wave func-
tion suggest that correlation can be introduced by simple corrections. This
forms the basis for Coulomb Hole models (see later) and DFT while stan-
dard post HF methods mentioned in the following sections present a more
involved path to dynamic correlation.

4.1 Configuration Interaction

The conceptually most simple approach to correlation is the Configuration
Interaction (CI) method. While being computationally expensive it does in
principal offer a systematic way of recovering as much of the correlation en-
ergy as needed.
The lack of correlation in the HF method can be characterized as the in-
flexibility of the wave function to keep the electrons apart. For example the
electrons of H2 are less likely found in the center of the H-H bond than on
each Hydrogen atom. The HF wave function does not account for this since
both electrons a forced to be in the totally symmetric bonding σg orbital. If
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the electrons are allowed to occupy the non-bonding σu orbital the dominant
left-right correlation of the two electrons are described. If the electrons could
occupy π-type orbitals, angular correlation could be described etc. This is
the idea behind the CI method where the wave function is built up as a
linear combination of the HF determinant and determinants generated as
single, double etc. excitations of electrons from this HF determinant.

Ψ = c1ΦHF +
∑

S

cSΦS +
∑
D

cDΦD + · · · (4.1.1)

By optimization of the coefficients of each excited determinant the CI method
arises. Including all possible excited determinants in a given basis set the
expansion is complete (Full CI) and gives the best possible energy within
this basis set. Unfortunately this approach is only applicable to small sys-
tems. The number of determinants in a system with n electrons and M basis
functions is (

2M

n

)
(4.1.2)

A number that grows dramatically with system size. In practice the CI ex-
pansion is therefore truncated at a suitable level. In CISD only singly and
doubly exited determinants are considered. Still this is not a computation-
ally cheap method scaling as O(N6).

As the size of the CI expansion is increased more and more of the cor-
relation energy is recovered. In the Coulomb hole picture this means that
our approximate wave function presents a better and better approximation
to the wave function and the critical regions of electron coalescence, as il-
lustrated on fig.4.1.2. The convergence towards the true wave function is
extremely slow. For the ground state of Helium one can perform a CI type
expansion of the wave function in orders of the principal quantum number
N (each level including the next set of N orbitals, 1s, 2s2p, 3s3p3d etc.) [11].
It is found that in the asymptotic limit the energy error as a function of N
is approximately

∆E(N) = CN−3 (4.1.3)

Actually, in a finite basis set the CI wave function will never satisfy the
Coulomb cusp condition and coincide with the true wave function since the
expansion of the CI wave function in terms of the interelectronic distance
is always in terms of r12, hence having vanishing derivatives at r12 = 0. A
wave function that explicitly obeys the Coulomb cusp condition can easily
be designed from a CI type wave function (ΨCI) by letting r12 enter the wave
function

ΨCI
r12

= (1 + 1
2
r12)Ψ

CI (4.1.4)
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r      = 012

Figure 4.1.2: Schematic illustration of the true wave function (thick gray
line), compared to two CI-type wave functions where the dashed one is of
higher accuracy than the dotted one.

Such methods employing r12 to impose a better description of the cusp are
called explicitly correlated or r12 methods. While being able to provide a
faster convergence of the correlation energy their computational cost makes
them less appealing. Implementations that efficiently evaluate the “new”
types of two electron integrals have been devised and r12 second order Møller
Plesset Perturbation (MP2) [12,13] and r12 Couples Cluster methods [14,15]
have been performed, though these methods are still not applicable to large
systems.
The most complete explicitly correlated CI type wave function is the Hyller-
aas wave function [16, 17]. By letting the CI expansion include all power of
the interelectronic distance the wave function is written as (in the simplified
totally symmetric, singlet two electron case)

ΨH = exp[−ξ(r1 + r2)]
∑

ijk

Cijk(r
i
1r

j
2 + ri

2r
j
1)r

k
12 (4.1.5)

This wave function is capable of recovering the correlation energy with micro
Hartree (µEh) accuracy.

It is without doubt that the existence of the Coulomb hole is the reason
for the need of long CI expansions if high accuracy is needed. An important
conclusion to draw however is that an accurate description of the cusp itself
is not needed in the regime of accuracy we are normally interested in (mEh).
In this regime the description of the entire Coulomb hole is the goal. Only
if µEh errors are the goal is the description of the cusp important. This
viewpoint has been brought forward by P. Gilbert [18] and more recently
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by Prendergast et al. [19], where an investigation of the CI convergence was
carried out using a cuspless two electron operator. The conclusion is not
surprising however. The level of detail you should put into the description
of the Coulomb hole and the cusp depends on what level of accuracy you are
aiming at. Finally it should be clear that a CI type wave function that has
been released from dealing with the Coulomb hole should experience a fast
converge. This is the main motivation for the hybrid models presented in
chapter III.

4.2 Multi Configurational Self Consistent Field

The CI wave functions built from the HF ground state determinant and
determinants generated by exciting electrons from the HF determinant has
some drawbacks. The HF determinant might not be a good approximation
to the state of the system in question. As a result it might be necessary to
include a large number of determinants to describe this state. In other words
the CI expansion was not done in a suitable basis of Slater determinants.
The Multi Configuration Self Consistent Field (MCSCF) method avoids these
problems. It too is a CI type wave function expansion (4.1.1) but instead of
just optimizing the CI coefficient the MOs used for constructing the Slater
determinants are also optimized in a self consistent manner. The procedure
is therefore iterative like the HF method, and can in fact be though of as
reducing to regular CI if the MOs are fixed, or reducing to HF if only a single
Slater determinant is considered.
Since the CI expansion of MCSCF theory is performed in the optimal set
of determinants (within the given basis set and active set of orbitals cho-
sen) the CI expansion can be expected to shorter than in regular CI. The
simultaneous optimization of MOs and Slater determinants however makes it
more computationally expensive than a CI with a determinant expansion of
equal length. A compromise would be to get the few optimal configurations
needed in a given application from a MCSCF optimization and subsequently
perform a Multi Reference Configuration Interaction (MRCI) calculation in
this basis of configurations.
The MO optimization in MCSCF rarely recovers a significant amount of dy-
namic correlation but generating the optimal set of configurations it is an
efficient way of recovering static correlation. The MCSCF method is how-
ever general and in principle capable of recovering both static and dynamic
correlation.
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4.3 Perturbation Theory.

Perturbation theory presents another way of improving upon the HF method.
Møller Plesset Perturbation theory [20] assumes that the HF Hamiltonian1

H0 present a good approximation to the Hamiltonian, meaning that the dif-
ference between the HF and the true H can be written as a small perturbation

Ĥ = Ĥ0 + λV̂ (4.3.6)

Since the sum of Fock operators count the electron repulsion twice the per-
turbation becomes the exact electron repulsions minus twice the electron
repulsion from H0. Taylor expanding the exact energy and wave function in
powers of the perturbation

Ψ = Ψ(0) + λΨ(1) + λ2Ψ(2) + · · · (4.3.7)

E = E(0) + λE(1) + λ2E(2) + · · · (4.3.8)

the perturbed Schrödinger equation writes

(Ĥ0 + λV̂ )(Ψ(0) + λΨ(1) + λ2Ψ(2) + · · · ) =

(E(0) + λE(1) + λ2E(2) + · · · )(Ψ(0) + λΨ(1) + λ2Ψ(2) + · · · ) (4.3.9)

We can collect terms of equal power in λ

Ĥ0Ψ
(0) = E(0) (4.3.10)

Ĥ0Ψ
(1) + V̂Ψ(0) = E(0)Ψ(1) + E1Ψ(0) (4.3.11)

Ĥ0Ψ
(2) + V̂Ψ(1) = E(0)Ψ(2) + E1Ψ(1) + E2Ψ(0) (4.3.12)

and so forth. Multiplication from the left with Ψ(0) and integration yields
the n’th order energy corrections

E(0) = 〈Ψ(0) | Ĥ0 | Ψ(0)〉 (4.3.13)

E(1) = 〈Ψ(0) | V̂ | Ψ(0)〉 (4.3.14)

E(2) = 〈Ψ(0) | V̂ | Ψ(1)〉 (4.3.15)

and so on. The 1st order correction therefore adds up to the usual HF energy
and the second order correction is needed to include any correlation. For
this the first order correction to the wave function is needed. To proceed it
is utilized that the solutions to the unperturbed Schrödinger equation form

1H0 is the sum of Fock operators : H0 =
∑N

i

(
hi +

∑N
j [Jij −Kij ]

)
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a complete set of functions (Φ
(0)
i ) in which we can expand the first order

correction to the wave function

Ψ(1) =
∑

n

c(1)
n Φ(0)

n (4.3.16)

Inserting this into Eq.4.3.11, multiplying from the left with Ψ(0) and inte-
grating these expansion coefficients can be found

c(1)
n = −〈Φ

(0)
n | V̂ | Φ(0)

0 〉
E

(0)
n − E(0)

0

(4.3.17)

With this the second order correction to the energy can be derived

E(2) =
1

4

∑
i,j

∑

a,b

[(ia | jb)− (ib | ja)]2
εa + εb − εi − εj

(4.3.18)

where i, j denotes occupied orbitals and a, b denotes virtual orbitals.

Including up to the second order correction in the energy yields the sec-
ond order Møller Plesset method (MP2). Computation of the second order
energy correction requires the transformation of the two electron integrals
from the AO basis to MO basis. A procedure that scales as N5. Still MP2 is
a fairly cheap way of including a major part of the dynamic correlation giving
reliable geometries [11, 21]. Higher order energy and wave function correc-
tions can be included to give the MP3, MP4 etc. methods. These methods
have become less popular, both because an unfavorable cost accuracy ra-
tio compared to methods like Coupled Cluster (CC, see below) and because
the convergence of the MPn series is known to oscillate for some systems [11].

An attempt to provide a more general perturbative approach to corre-
lation that is also capable of dealing with static correlation is provided by
CASPT2 [22]. This is essentially an extension of MCSCF theory to let dy-
namical correlation be described by second order perturbation theory, but
while high accuracy can be achieved this way the computational cost still
prohibits large scale calculations.

4.4 Coupled Cluster Theory.

The main idea of the perturbative Coupled Cluster Theory (CC) [23, 24] is
to include all corrections of a given type to infinite order. The CC wave
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function is written

Ψ = exp(T̂ )ΨHF

= exp(T̂1 + T̂2 + T̂3 + · · · )ΨHF (4.4.19)

where T̂i generates all the i’th excited determinants from the reference (HF)
wave function

T̂1ΨHF =
∑

i

∑
a

cai Ψ
a
i (4.4.20)

T̂2ΨHF =
∑
i<j

∑

a<b

cab
ij Ψab

ij (4.4.21)

and so on, where the expansion coefficients c (or amplitudes) are the un-
knowns.
Expansion of the exponential operator yields

exp(T̂ ) = 1 + T̂ + 1
2
T̂ 2 + 1

6
T̂ 3 + · · ·

= 1 + T̂1 + (T̂2 + 1
2
T̂ 2

1 ) + (T̂3 + T̂2T̂1 + 1
6
T̂ 3

1 ) + · · ·
(4.4.22)

where the terms have been grouped so that the first term generates all singly
excited determinants, the terms in the first parenthesis generate all double
exited determinants, etc.
To make CC theory computationally feasible the Cluster operator T̂ is trun-
cated at some level. Including only single and double excitations in T̂ yields
the CCSD method where the wave function can be written

ΨCCSD = ΨHF + T̂1ΨHF +
(
T̂2 + 1

2
T̂ 2

1

)
ΨHF +

(
T̂2T̂1 + 1

6
T̂ 3

1

)
ΨHF

+
(

1
2
T̂ 2

2 + 1
2
T̂2T̂

2
1 + 1

24
T̂ 4

1

)
ΨHF + · · · (4.4.23)

From this the advantage of CC theory is clear. Even though the cluster oper-
ator is truncated at n=2 the CCSD wave function includes contributions to
triple, quadruple and higher order excitations as products of first and second
order excitations. In the “CI picture” this means that in the CCSD model
all determinants have nonzero coefficients in the FCI expansion of the wave
function whereas CISD only includes up to doubly excited determinants.
In particular the CCSD method includes the dominant contribution to the
quadruple excitations (T̂ 2

2 ).
This non-linear parameterization of the CC wave function means that CC
converges much faster towards the FCI limit than CI. The inclusion of all
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excitations from a truncated cluster operator to infinite order furthermore
means that the CC method is size consistent in contrast to the truncated CI
methods.

Deriving the expression for the amplitudes and the energy is beyond the
scope of this CC review. Here I will restrict myself to just mention that the
amplitudes can be derived by multiplying the Schrödinger equation

exp(−T̂ )Ĥexp(T̂ )ΨHF = ECCΨHF (4.4.24)

from the left by all singles and doubles configurations and solving the non-
linear equations for the amplitudes (see for example [11]). The CC energy is
obtained from Eq.4.4.24 upon multiplication form the left by the reference
wave function ΨHF .

As a final note on CC theory it should be mentioned that while the
CCSD method is applicable to fairly large system (N6 scaling) the higher
order corrections become unpractical for anything but the smallest systems
(N8 scaling). A economical compromise is to include the effects of the triples
from perturbation theory which defines the CCSD(T) method [25]. With a
N7 scaling this method is readily applied to small and medium sized systems
and typically reduces the error in the correlation energy with a factor of 5
to 10 compared to the CCSD model which typically already recovers 95% of
the correlation energy [26].
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4.5 Density Functional Theory

4.5.1 Introduction

While the standard methods presented in the previous sections are in prin-
ciple capable of providing as high accuracy as needed their computational
cost prohibits this in practice. This was seen to be due to the difficulty
in describing closely interaction electrons, i.e the exchange and correlation
holes. To put it differently, the wave function based methods need to deal
with a complex wave function of 4N variables, the spatial and spin variables
for each electron. The force of Density Functional Theory (DFT) is that it
avoids dealing directly with the wave function but instead derive the energy
of a system in terms of the electronic density, thereby reducing the dimen-
sionality of the problem significantly.
As such, DFT is as old as quantum mechanics itself and actually predates
the HF model. In 1927 Thomas [27] and Fermi [28] proposed a simple expres-
sion for the kinetic energy of a uniform electron gas and combined with the
nuclear attraction and classical Coulomb repulsion their gave an expression
for the energy of an atom purely in terms of the density. Shortly thereafter
Dirac [29] expressed the exchange energy of a uniform electron gas in terms
of the density, a functional form of the exchange energy that was reused, yet
with a different prefactor, when Slater [30] sought an approximation for the
Hartree-Fock Exchange (the Xα or Hartree-Fock-Slater exchange).

4.5.2 The Hohenberg-Kohn Theorems

Though DFT and wave function theory (WFT) are of equal age, DFT was
not given a formal footing until 1964 when Hohenberg and Kohn [31] showed
that the electron density in fact does uniquely determine the system and its
properties. To quote the famous article : “the external potential Vext(r) is
(to within a constant) a unique functional of ρ(r); since, in turn Vext(r) fixes
Ĥ we see that the full many particle ground state is a unique functional of
ρ(r)”. The proof of this first theorem is strikingly elementary and runs by
contradiction. A just as elegant way of looking at the DFT WFT correspon-
dence is the following. As mentioned in the previous section the exact wave
function obeys the Nuclear cusp condition. The equivalent condition for the
density writes

∂

∂rA

ρ(rA)

∣∣∣∣
rA=0

= −2ZAρ(0) (4.5.1)

Given the exact density we are in principle therefore capable of locating the
position of the nuclei of the system where the density has its cusps. Moreover
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the charge of the nuclei can be determined from the slope of the density in
these points. Given this information the full Hamiltonian of the Schrödinger
equation is known and the wave function can in principle be found. In
fact since the Hamiltonian can be built from the ground state density the
properties of all states, ground state and excited states, can in principle be
found from the ground state density. The fact that DFT is termed a ground
state theory is due to the second Hohenberg-Kohn theorem which brings the
variational principle into DFT. In short, it states that for any trial density
ρ̃(r), with ρ̃(r) ≥ 0 and

∫
ρ̃(r)dr = N , the energy associated with the trial

density is an upper bound for the ground state energy.

E0 = E[ρ] ≤ E[ρ̃] (4.5.2)

Again the proof is simple since the first theorem relates the trial density ρ̃(r)
to a trial Hamiltonian H̃ and trial wave function Ψ̃ for which the variation
principle relates the expectation value of the Hamiltonian to the expectation
value of the ground state wave function.

〈Ψ̃ | H̃ | Ψ̃〉 =

∫
ρ̃(r)vext(r)dr+T [ρ̃]+Vee[ρ̃] = E[ρ̃] ≥ E0[ρ0] = 〈Ψ0 | Ĥ | Ψ0〉

(4.5.3)
where v(ri) = Vext(ri) =

∑N
A −ZA

riA
. Two assumptions have been made. That

the ground state is not degenerate and that the density arises from an anti-
symmetric wave function with a Hamiltonian determined by some external
potential. Such a density is called v-representable.

4.5.3 The Constrained Search Formulation

The Levy Constrained Search [32] formulates a practical way of searching for
the optimal density and at the same time lifts the constraints present in the
second Hohenberg-Kohn theorem.
The sought density only needs to be N -representable, i.e. it can be obtained
from an antisymmetric wave function. The starting point is again the varia-
tional principle which allows a comparison of the energy of the ground state
energy E0 and that of a trial wave function Ψρ0 that integrates to the ground
state density ρ0(r).

〈Ψρ0 | Ĥ | Ψρ0〉 ≥ 〈Ψ0 | Ĥ | Ψ0〉 = E0 (4.5.4)

The external potential is determined purely be the density which is equal
for the wave functions considered here. Hence it can be eliminated from the
inequality

〈Ψρ0 | T̂ + V̂ee | Ψρ0〉 ≥ 〈Ψ0 | T̂ + V̂ee | Ψ0〉 (4.5.5)
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The optimal wave function Ψ0 is therefore the wave function that minimizes
the expectation value of T̂ and V̂ee. Levy defined the universal functional
F [ρ] as

F [ρ] = min
Ψ→ρ
〈Ψ | T̂ + V̂ee | Ψ〉 (4.5.6)

which searches all Ψ that yield a given density ρ. The ground state energy
is now found by searching for N -representable ρ which yield the minimum
energy

E0 = min
ρ→N

[
F [ρ] +

∫
v(r)ρ(r)dr

]
(4.5.7)

In the case of a degenerate ground state only one wave function would be
picked out by F [ρ] out of the set of degenerate Ψ. Namely the Ψ associated
with ρ0.

4.5.4 The Kohn Sham Approach

With the Hohenberg-Kohn theorems the existence of the universal functional
F [ρ] (4.5.6) was proven. Had it been known the solution to the Schrödinger
equation would have been known. Indeed the earliest attempts at DFT can
be viewed as attempts to find approximate forms to the contributions to
F [ρ]. It quickly became clear that finding sufficiently good approximations
to each term separately was impossible and this could very well be why DFT
was largely ignored until 1965 when Kohn and Sham [33] presented their
approach. This approach introduces the non-interacting system: a fictitious
system of N electrons not interacting by Coulombic interactions but sub-
jected to an effective potential to ensure this reference system has the same
density as the physical system. The introduction of this reference system was
motivated by the observation that since the kinetic energy constitutes such
a large fraction of the total energy this term should be accurately presented.
For the non-interacting system the exact solution is known to be a single
determinant with the kinetic energy given by

Ts[ρ] = −1
2

N∑
i

〈φi | ∇2 | φi〉 (4.5.8)

where φi is a spin-orbital of the Slater determinant as in 3.0.2, although not
the same ones as in HF theory and ρ given as ρ(r) =

∑N
i | φi(r) |2. With ρ

being the same as the true density Ts[ρ] is a very good approximation, but
not equal to, the exact kinetic energy T [ρ]. Kohn and Sham decomposed the
energy as

E[ρ] = Ts[ρ] + J [ρ] +

∫
v(r)ρ(r) + Exc[ρ] (4.5.9)
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where the only unknown Exc[ρ] now contains all the problematic terms :
the remaining part of the kinetic energy and the non-classical two electron
interaction

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Vee[ρ]− J [ρ]) (4.5.10)

Though the energy is purely a functional of the ground state density, orbitals
need to be introduced to equate the non-interacting kinetic energy Ts. Min-
imization of the energy under the constraint that the Kohn-Sham orbitals
stay orthonormal yields the Kohn-Sham equations

[−1
2
∇2 + veff(r)

]
φi = εiφi (4.5.11)

veff(r) = v(r) +

∫
ρ(r

′
)

| r− r′ |dr
′
+ vxc(r) (4.5.12)

vxc(r) =
∂Exc[ρ]

∂ρ(r)
(4.5.13)

Just like the Hartree-Fock equation, the Kohn-Sham equations Eq.4.5.11
needs to be solved iteratively since the effective potential depends on the
density. Had Exc been known the solution to the Kohn-Sham pseudo eigen-
value equations would have been the exact solution, covering all correlation
effects. In practice we have to resort to approximate functionals.

4.5.5 The Adiabatic Connection

The adiabatic connection [34] offers a convenient way of connecting the non-
interacting system with the interacting (physical) system. At the same time
it provides information on how to construct good approximate exchange cor-
relation functionals by making a connection between the unknown functional
and the exchange and Coulomb holes mentioned in sec.3.2.
In the adiabatic connection an effective Hamiltonian is built from the real
Hamiltonian by introducing a coupling strength parameter µ

Ĥeff(µ) = T̂ + V̂ µ
eff + Ŵ µ

ee (4.5.14)

Ŵ µ
ee is the µ-dependent two-electron interaction and V̂ µ

eff is an effective exter-
nal potential that keeps the density of the system equal to that of the real
physical system. Many forms of the µ-dependence of Ŵ µ

ee could be chosen.
For this purpose we choose a simple form

Ŵ µ
ee = µ

∑
i<j

1

rij

(4.5.15)
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The Kohn-Sham non-interacting system (recovered at µ = 0) is now con-
nected to the fully interaction system (µ = 1) by partially interacting sys-
tems (µ =]0, 1[). The energy of the physical (fully interacting) system is now
given from the non-interacting system by

Eµ=1 = Eµ=0 +

∫ 1

0

dE(µ)

dµ
dµ (4.5.16)

= 〈Ψµ | T̂s + V̂ µ=0
eff | Ψµ〉+

∫ 1

0

dE(µ)

dµ
dµ (4.5.17)

To be able to benefit from this connection an expression for the µ-dependence
of E is found

dE(µ)

dµ
=

〈
Ψµ

∣∣∣∣∣
dĤeff(µ)

dµ

∣∣∣∣∣ Ψµ

〉
=

〈
Ψµ

∣∣∣∣∣
dV̂ µ

eff

dµ

∣∣∣∣∣ Ψµ

〉
+

〈
Ψµ

∣∣∣∣∣
dŴ µ

ee

dµ

∣∣∣∣∣ Ψµ

〉

(4.5.18)
which upon integration of µ?yields

∫ 1

0

dµ

〈
Ψµ

∣∣∣∣∣
dV̂ µ

eff

dµ

∣∣∣∣∣ Ψµ

〉
=

∫
dr[V̂ext(r)− V̂ µ=0

eff (r)]ρ(r) (4.5.19)

and

∫ 1

0

dµ

〈
Ψµ

∣∣∣∣∣
dŴ µ

ee

dµ

∣∣∣∣∣ Ψµ

〉
=

∫ 1

0

dµ
1

2

∫∫
dr1dr2

dŴ µ
ee

dµ
ρµ

2(r1, r2)

=

∫ 1

0

dµ
1

2

∫∫
dr1dr2

dŴ µ
ee

dµ
[ρ(r1)ρ(r2) + ρ(r1)h

µ(r2; r1)]

=
1

2

∫∫
ρ(r1)ρ(r2)

r12

dr1dr2 +

1

2

∫∫ ∫ 1

0

dhµ(r2; r1)

dµ
dµ
ρ(r1)

r12

dr1dr2 (4.5.20)

Collecting all terms the energy writes

E[ρ] = Eµ=1[ρ] = 〈Ψµ | T̂s + V̂ext | Ψµ〉+ 1

2

∫∫
ρ(r1)ρ(r2)

r12

dr1dr2 + Exc[ρ]

(4.5.21)
as in (4.5.9). The new thing is that the exchange correlation functional has
now been expressed by the coupling strength dependent exchange correlation
hole

Exc[ρ] =
1

2

∫∫ ∫ 1

0

dhµ(r2; r1)

dµ
dµ
ρ(r1)

r12

dr1dr2 (4.5.22)



26 Chapter 4 Post HF Methods

The difference in this expression and the one found earlier for the exchange
correlation hole (3.2.7) is that (4.5.22) also includes the correction for the
error introduced by replacing the kinetic energy for the physical system with
the much easier computed kinetic energy for the non-interaction system. This
correction is handled by the integration of the hole over the coupling strength
parameter (µ).

4.5.6 Approximate Functionals

The big accomplishment of the Kohn-Sham formulation is that as much of
the energy as possible is computed exactly so that the exchange correlation
functional only had to cover minor corrections.
The adiabatic connection made a correspondence between the exchange cor-
relation hole and the functionals that we seek. Thus the functionals must
describe the spherical average of the exact hole. A simple model system is
the uniform electron gas which works surprisingly well considering its simple
nature. Model functionals derived from the uniform electron gas have al-
ready been presented in sec.4.5.1, the Dirac and Dirac-Slater exchange. The
correlation part cannot likewise be derived analytically but instead several
analytical expressions have been suggested on the basis of accurate Monte
Carlo calculations on the uniform electron gas. The most widely used rep-
resentation is due to Vosko, Wilk and Nusair [35], denoted the VWN cor-
relation functional. When combined with Slater Exchange this exchange
correlation functional is referred to as the Local Density Functional (LDA)
and widely used. Although LDA is by no means the most accurate approx-
imate functional available it has been, and still is, successfully applied in
many application and remains a very reliable model. The errors of LDA are
very systematic with the total exchange typically being underestimated by
10% while correlation is typically overestimated by a factor of 2 or 3. Since
the exchange energy is an order of magnitude larger than the correlation
energy the LDA model benefits from an error cancellation which brings the
typical LDA exchange correlation error to about 7%. HOMO LUMO gaps
are consistently underestimated by LDA and just as consistently LDA over
binds molecules. However at small inter electronic distances the exchange
correlation hole provided by LDA agrees reasonable well with the exact hole,
a property that is also reflected in its name. In LDA the neighborhood of a
reference electron is treated as if it was part of a homogenous electron gas
of constant density. This is a good approximation in solid state physics but
might not always apply to atoms and molecules where the density can be
expected to vary considerably. The logical step to take from LDA is let-
ting the functional not only depend on the density but also of the gradient
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of the density. Such Gradient Expansion approximations (GEA) try to take
the non-homogeneity into account. A straightforward implementation of this
idea would however not improve on LDA due to the fact that the holes of
GEA functionals, unlike LDA holes, does not fulfill the sum rules of the ex-
act holes. Enforcing these properties and thereby “fixing” the holes greatly
improves upon GEA and produces the generalized gradient approximation
(GGA). Popular implementations of these ideas is the exchange functional
by Becke [36], called B88 or just B, which presents a correction to Dirac
exchange, and the correlation functional by Lee, Yang and Parr [37] which
is basically a functional fitting of an expression for the correlation energy by
Colle and Salvetti [38] that will be mentioned in chapter 6. The combination
of the exchange and correlation functionals (BLYP) present a very successful
approximation.

Another class of functionals arise from the same motivation that led Kohn
and Sham to let the kinetic energy be evaluated from a Slater determinant.
If this was a success the why not apply the same reasoning to the exchange
energy since this by far is the largest contribution to Exc. Letting the ex-
change energy be calculated from the Slater determinant (exact exchange)
and combining with a functional for the correlation hole proves to be an
unsuccessful combination. In short one can say that the approximate func-
tionals rely to some degree on the fact that the total exchange correlation hole
is localized around the reference electron while each component can be delo-
calized. By construction both the exchange and correlation holes are fairly
localized meaning that the total functional can be a good approximation to
the total exact hole, but each component separately can not. Therefore the
combination of a localized approximate correlation hole with a delocalized
“exact” exchange hole is not a good idea. Becke viewed this problem in
the light of the adiabatic connection and proposed that the exchange energy
can be written as a mixture of exact exchange (the µ = 0 limit) and the
exchange energy from a functional (an approximation to the µ = 1 limit).
As a first approximation a half and half mixture of exact and functional
exchange was proposed [39] but this this was significantly improved by the
three parameter combination of Becke exchange with exact exchange and
LYP correlation [40] (B3LYP). This is perhaps the most popular functional
of modern density functional theory.

Despite the fact that modern approximate functionals do normally pro-
vide sufficiently accurate descriptions of the exchange correlation hole there
are some problems associated with taking this “short-cut” to correlation. As
mentioned a property of the exchange term in HF theory is that it completely
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cancels with the classical Coulomb term for r2 → r1. Replacing the HF ex-
change with an approximate functional exchange this is not fulfilled in DFT
giving rise to the self interaction error - the fact that in DFT the isolated
electron has a non-vanishing contribution from J [ρ] + Exc[ρ]. Though sev-
eral approaches to remedy this has been proposed the increased complexity
associated with these self-interaction corrections (SIC) means they are not
widely applied. Actually it is sometimes found that SIC deteriorates the
DFT results. The work of Cremer et al. [41] even suggests that the effect self
interaction has on the density mimics the effect of static correlation. This
does not mean that DFT in general accounts for all static correlation effects,
unless the exact functional is found. Being a single determinant ansatz DFT
with approximate functionals is not capable of dealing with degeneracy and
dissociation. Ensemble DFT is an attempt to deal with these issues [42].

A related classic problem of DFT is the asymptotic behavior of the ex-
change correlation potential. The exact potential should behave like −1

r
for

large distances from the nuclei. The approximate potentials decay exponen-
tially instead, i.e. much too fast. This could seem an unimportant defect but
it does have unwanted consequences for virtual Kohn-Sham orbitals which
will affect properties like electron affinities and properties related to the re-
sponse of the system to electromagnetic fields [43,44].



Chapter 5

Summary

It should be clear by now that though the post-HF mentioned above in prin-
cipal provide us with the means to compute the wave function to as high ac-
curacy as wanted this is not possible in practice and the post-HF methods all
have their pros and cons. The multi-reference methods (especially MCSCF)
can efficiently deal with static correlation and provide qualitative correct ref-
erence wave functions. They do however present a very cumbersome route
to covering dynamic correlation. The single reference correlated methods
: DFT, MP2, CCSD, CCSD(T) (listed with increasing computational cost)
more efficiently deal with dynamic correlation but fail in efficiently describ-
ing static correlation. An ultimate goal would be a way of letting a MCSCF
wave function provide a qualitatively correct reference wave function and
constructing an efficient way of describing dynamic correlation from this ref-
erence wave function. If this could be achieved we would have a high quality
wave function that would allow computations of energies and properties of
both ground and excited states.

The next two chapters present two different proposals for such a CI/MCSCF
with effective dynamic correlation scheme.
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Coulomb Hole Models.
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Chapter 6

Introduction

DFT is a different route to correlation than wave function theory (WFT)
in that the density is the central quantity in the attempt to describe the
correlation hole. Yet another category of models can be defined that directly
attempts to craft the correlation hole into WFT by modifying or adding new
operators to the Hamiltonian. One could say that while DFT approximates
the entire expression in (4.5.22) the Coulomb hole models try to introduce
an approximation for the hole function hµ directly in the Hamiltonian.

The motivation behind the Coulomb hole models is that, as seen ear-
lier, the Coulomb hole is a small perturbation to the electronic density when
compared to the exchange hole. The latter is to a large degree taken care
of when using antisymmetric wave functions and so it should be possible
to reliably model the Coulomb hole which is known to only be of impor-
tance for closely interacting electrons. In the cases where static correlation
is important one could, at least to a first approximation, assume that static
and dynamic correlation can be treated separately and let an MCSCF type
wave function deal with static correlation while an approximate scheme for
recovering the final part of the dynamical correlation energy could be used.
This is what the coulomb-hole models set out to provide. Care should be
taken though. An obvious choice of reference wave function could be of the
’Complete Active Space Self-Consistent Field’ (CASSCF) or ’Restricted Ac-
tive Space Self-Consistent Field’ (RASSCF) type [1], since this approach is
an effective way of recovering static correlation. But being a CI-type wave
function it will recover some part of the dynamic correlation as well, giving
the possibility of counting part of the dynamic correlation effects twice if a
coulomb-hole model is simply applied on top. If however one succeeds in
making such a combination of MCSCF theory with an approximate scheme
for dynamic correlation one would have a general method being capable of

34



35

describing correlation effects efficiently and allowing calculations in situa-
tions where single reference correlated methods can fail : near degeneracies,
dissociation, exited states etc.

The Coulomb hole models try to constrain the approach of the electrons
to each other, and in the earliest hard Coulomb hole models of E. Clementi
[2, 3] this is attempted by introducing non-overlapping spheres around each
electron to be seen by electrons of opposite spin. In the later soft Coulomb
hole models of E. Clementi [4–7] and I. Panas [8–10] a smoother modeling of
the Coulomb hole is attempted by performing a modification of the Coulomb
operator,

1

r12

→ θ(r12)

r12

(6.0.1)

where θ(r12) is a function of the inter-electronic distance, with the properties
that,

1. it approaches 1 for large inter-electronic distances, giving back the un-
perturbed Coulomb operator outside the Coulomb hole.

2. it decreases faster than r12 inside the hole, and approaches zero for
small inter-electronic distances.

In this way electrons far away from each other are unaffected by the mod-
ification as our standard models have no problem describing that situation,
and the only part of the interaction-space we attempt to improve is the short-
range space.

Clementi’s choice of such a function was θ(µr12) = 1 − e−µr2
12 where µ

depended on the basis set. The Colle-Salvetti functional [11–13] is likewise a
functional of the pair density (3.1.4) and can also be considered a Coulomb
hole model although a connection to a modified two electron operator of the
form (6.0.1) is less clear. The success of the Colle-Salvetti in modeling the
Coulomb hole is evident from the fact that the LYP [14] correlation functional
used in the Kohn-Sham formulation of DFT is a refitting of this functional
to the density.



Chapter 7

The Coulomb Hole model of I.
Panas

Panas’ choice of a function that has the properties listed above, is the error-
function [8–10]

θ(µr12) = erf(µr12) =
2√
π

∫ µr12

0

e−t2dt (7.0.1)

where the parameter µ has been introduced to allow adjustment of the extent
to which the approach of the electrons to each other should be constrained.
This is illustrated on the figure of this function 7.0.1. The bigger the value of
µ, the more of the unmodified Coulomb repulsion do the electrons experience.
The connection between the modified two electron operator and the exchange
correlation hole is clear from writing the electronic repulsion energy using the
exchange correlation hole as in Eq.3.2.2

Vee[ρ] = 1
2

∫∫
ρ2(r1, r2)

r12

dr1dr2

= 1
2

∫∫
ρ(r1)ρ(r2)[1 + hxc(r1, r2)]

r12

dr1dr2 (7.0.2)

And θ(µr12) can be seen as an approximation to the correlation hole [1 +
hµ

xc(r1, r2)]. One could argue that since antisymmetry already ensures an ex-
change hole [1+θ] should only approximate the Coulomb hole hc. This would
correspond to using the regular two electron operator for the exchange terms
and the modified operator for the Coulomb terms. This approach would how-
ever introduce self-interaction since the exchange and Coulomb terms would
not cancel for r1 → r2

1. Using the same µ value for both exchange and

1This approach has been tested and for the potential energy of H2 the results were of
much poorer quality than the model where the same µ value is used for both exchange
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Figure 7.0.1: The error-function, erf(µr12) for µ = 1 (dashed line) and µ = 5 (full
line)

Coulomb terms the Coulomb hole model is of course self-interaction free.

7.1 Panas Corrected ERIs

The only computational difference between a normal ab initio method and
a method corrected as proposed by I. Panas is the way the electronic repul-
sion part of the total electronic energy is calculated. Instead of the normal
Coulomb operator, the modified operator of (6.0.1) is used. For the calcu-
lation of an electronic repulsion integral you get a more useful form of the
modified Coulomb operator by making the substitution, t = s ·r12, and using
the definition of the error function one gets :

θ(µr12)

r12

=
2

r12

√
π

∫ r12µ

0

e−t2dt =
2√
π

∫ µ

0

e−s2r212ds (7.1.3)

Using the Laplace transform of the unmodified Coulomb operator, equation
(6.0.1) could be written as

2√
π

∫ ∞

0

e−s2r212ds→ 2√
π

∫ µ

0

e−s2r212ds (7.1.4)

and Coulomb terms.
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and the Panas correction is identified as a truncation of the Laplace trans-
form of the Coulomb operator. Therefore the evaluation of Panas corrected
(or regularized) integrals is basically calculated with the same effort as the
normal ERIs. The evaluation is presented in AppendixB.1. The end result
is that the regularized ssss integral takes the form

regERI = 2π−7/2

(
ab

a + b

)3/2 (
cd

c + d

)3/2

KabKcd ·
√
τF0(τR

2
PQ)

(7.1.5)

All that has to be done to calculate the regularized integrals is to replace the
normal reduced exponent η = αβ

α+β
, α = a+ b, β = c+ d by

η → τ = η · ξ2 =
ηµ2

η + µ2
=

1
1
η

+ 1
µ2

(7.1.6)

and the Panas correction can be applied without increasing the computa-
tional effort. It is noticed that µ → ∞ restores the original repulsion inte-
grals.

Integrals over basis functions of higher angular momentum, are calculated
using a recurrence relation scheme. Following the McMurchie-Davidson [15]
scheme the Gaussian charge distributions are expanded in Hermite Gaussian,
and integrals of general order in the angular momentum can be expressed as
derivatives of the zeroth order Boys function, as presented for the regular
two electron integrals in AppendixA.2

gabcd = 2π−7/2

(
ab

a + b

)3/2 (
cd

c + d

)3/2 ∑
tuv

Eab
tuv

∑

τνφ

(−1)τ+ν+φEcd
τνφ

(
∂

∂Px

)t+τ (
∂

∂Py

)u+ν (
∂

∂Px

)v+φ√
ηF0(ηR

2
PQ) (7.1.7)

where
∑

tuv E
ab
tuv are the expansion coefficients of the Gaussian distribution

of order n = t + u + v in Hermite Gaussians, formed by the product of
two Gaussians centered on points a and b. Invoking the Panas correction in
(7.1.6) the expression in (7.1.7) becomes

reg − gabcd = 2π−7/2

(
ab

a + b

)3/2 (
cd

c + d

)3/2 ∑
tuv

Eab
tuv

∑

τνφ

(−1)τ+ν+φEcd
τνφ

(
∂

∂Px

)t+τ (
∂

∂Py

)u+ν (
∂

∂Px

)v+φ√
ηξF0(ηξ

2R2
PQ)

(7.1.8)
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and the two linear combinations are identical, except that for each Fn in
(7.1.7), generated by differentiation of F0 n times, the corresponding term
in (7.1.8) is multiplied by ξ2n+1, and the argument to the nth order Boys
function is multiplied by ξ2.

To carry out calculations with the Panas correction an expression for µ
is needed. To get an individual value of µ for each two-electron integral
without using fitted parameters, Panas sought an expression for µ in terms
of the basis set. In Appendix C it is shown how I. Panas ends up with
expressing µ in the exponents of the Gaussian charge distributions involved
in a given ERI :

µ2 =
α + β

2
+

√(
α + β

2

)2

+ α · β (7.1.9)

Panas makes another refinement though. Having grafted a Coulomb hole
model onto the wave function and thereby constrained the approach of the
electrons to each other, the kinetic energy must also be affected. He chooses
to introduce the parameter f which, when chosen greater than one, will
reduce the effect of the correction to Vee, as would an actual correction to
the kinetic energy, assuming that the Coulomb hole reduces the space taken
up by the electrons. The need for a scaling of µ also seems reasonable when
considering the simple expression for µ. Even if the expression has the right
behavior, it is only based on the basis set, and it seems likely that some
further calibration is needed. The modified Coulomb operator becomes,

1

r12

→ 2√
π

{∫ f·µ

0

exp(−s2r2
12)ds

}
(7.1.10)

the new expression for µ is,

µ2 =
α+ β

2
+

√(
α + β

2

)2

+
α · β
f2

(7.1.11)

and the equivalent of (B.1.5) is

η → τ = η · ξ2 =
ηf2µ2

η + f2µ2
=

1
1
η

+ 1
f2µ2

(7.1.12)

Panas argues that a value of f of around 2.0 is a good choice.

7.2 Interpretation Of The Panas Model

The straightforward interpretation of the integral representation of the mod-
ified and unmodified Coulomb operators (7.1.4) is that the excess repulsion
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of an uncorrelated model is simple thrown away as the integration is only
carried out to a finite value. Throwing away part of Vee, the total electronic
energy of the Panas corrected model is expected to be lower than in the un-
corrected ab initio model, as would be the case if the level of correlation was
increased using standard ab initio models. This way of introducing dynamic
correlation into a model is very different from the way it is usually done in
ab initio models. Rather than introducing correlation by letting a number of
configurations enter the wave function, the effects of correlation is mimicked
by modifying the electronic repulsion operator directly. The slow convergence
toward the true wave function of standard correlated ab initio methods can
be characterized as the difficulty of making the wave function balance the
singularity in the Coulomb operator, and therefore a faster convergence is
expected if these demands are removed. This is exactly what the Panas cor-
rection sets out to do : 2√

π

∫ µ

0
e−s2r212ds → 2µ√

π
as r12 → 0. Assuming that µ

depends on the quality of the wave function, the Panas correction can thus
be characterized as making the treatment of electron repulsion fit the quality
of the wave function, rather than employing the true Coulomb operator to-
gether with an approximate wave function as done in conventional ab initio
methods. The expression that Panas suggests for µ (7.1.11) does not directly
depend on the quality of the wave function but on the building blocks of the
wave function - the basis set. This allows us to illustrate how the Panas cor-
rection affects the s-type repulsion integrals between two charge distributions
of exponents α and β. Aside for some common constants the uncorrected
and corrected integrals are given by

√
cF0(cR

2
PQ) and

√
τF0(τR

2
PQ) using the

same notation as in section 7.1 : c = αβ
α+β

, τ = cf2µ2

c+f2µ2 , f=2, RPQ being the
distance between the center of the two charge distributions and µ calculated
from (7.1.11). These functions are plotted in figure (7.2.2) in the case of
relatively compact distributions(α = β = 20), and more diffuse distributions
(α = β = 2). For each of the two sets of curves, the lower one represents
the modified potential. As expected the correction lowers the potential to
mimic the potential present if the electrons were kept apart by correlation,
and furthermore it is observed that the correction has no effect for large
distances. √

cF0(cR
2
PQ)√

τF0(τR
2
PQ)

}
→

√
π

4

1

RPQ

as RPQ →∞ (7.2.13)

It is observed that for small RPQ the difference between the modified and
unmodified potentials is larger for the compact charge distributions (α = β =
20) than for the more diffuse charge distributions (α = β = 2). Furthermore,
upon close inspection, it is observed that the Panas correction affects the
diffuse charge distributions for larger RPQ values than the compact charge
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Figure 7.2.2:
√

cF0(cR2
PQ) and

√
τF0(τR2

PQ) for Gaussian distributions with ex-
ponents α = β = 20 (upper two lines) and α = β = 2 (lower two lines). The
Coulomb potential from point charges (1/Rpq) is also shown.

distributions. Both observations support that the Panas correction has some
of the wanted physics built into it. Since dynamic correlation is a short range
effect the correction only should have an effect when electrons are likely to
be close to each other. Hence,

• When electrons are located in compact charge distributions then the
correction should have a relatively large effect, but the correction should
die off quickly with the distance between the distributions.

• When electron are located in diffuse charge distributions the correction
should have a relatively small effect, but the correction should have a
longer range since the overlap of the distributions has a longer range.

7.3 Testing The Model.

In the following results from using the Panas Coulomb hole model are pre-
sented. When using the correction with some wave function, X, the method
will be denoted regX. For example, regHF, is an abbreviation for the Hartree-
Fock using the regularized two electron integrals, as proposed by I. Panas.
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7.4 Ground State Energies And Basis Set De-

pendence

Using the Dalton program package [16], the ground state energies of He
and Be are reported in table 7.4.1. The Panas correction is seen to lower
the energy as expected. It is seen that the Panas correction only shows
a slight dependence on the quality of the reference wave function but the
dependence has the right behavior. Applying the correction to the MP2
wave function of He you get an energy lowering of the same order as when
the correction is applied to the HF wave function. The contribution from the
correction only drops slightly for the CAS wave functions and even for FCI
wave function the contribution amounts to 75.8% of that gained from the
HF wave function. The Panas correction is clearly not meant for use with
MP2 and FCI wave functions but it is a reasonable assumption that some
dependence on the quality of the reference wave function should be present
and whether a refinement is needed or not will be discussed further in section
7.6.

One could also choose to use the Panas correction as a perturbation to the
converged ab initio wave function. This has been tested for He and from table
7.4.2. The difference between the correlation energies from the two ways of
using the correction is of the order 10−4. Looking at the difference between
the correlation energies obtained from the HF and CAS wave functions you
get : ∆Epert

c,CAS-∆Epert
c,HF = 0.076 and ∆Evar

c,CAS-∆Evar
c,HF = 0.061. This underlines

the conclusion made previously. Since the difference when going from a
HF to a CAS wave function, using the modified coulomb operator in the
optimization, is smaller than if you apply the correction to the optimized
wave function, the CAS wave function must to some degree be affected by
the corrected description of electron-electron interaction.

A final conclusion can be made from the numbers in table 7.4.1. The
Panas correction seems to be quite basis set independent. As pointed out in
section 7.2, this can be explained by the fact correlation is modeled by direct
modification of the Coulomb operator, and having removed its singularity
the need for a very flexible wave function is eliminated.

7.5 Excitation Energies

Here the vertical excitation energies of He and Ne are calculated using linear
response. For He (table 7.5.3) HF, CASSCF and FCI wave functions are
considered, while Ne (table 7.5.4) is treated with HF, CASSCF and CCSD.
Large basis sets have been used in all cases, and the FCI (He) and CCSD
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Table 7.4.2: Correlation energy of He for HF and CAS wave functions, in an
ano basis seta using the Panas correction in the optimization of the wave func-
tion (∆Evar

c ), and as a perturbation of the optimized wave function (∆Epert
c ).

E ∆Epert
c ∆Evar

c

HF -2.861626694770 -0.022648055843 -0.022741450756
CAS -2.868637185119 -0.021712054076 -0.021800017075

a Basis set is that of Widmark et al. [17] using 6s- and 4p-functions.

(Ne) numbers are proof that these calculations have been performed near the
basis set limit. A conclusion applying to both studies is that the calculated
excitation energies are increased when going from the uncorrected ab initio
method (f = ∞) to the correction suggested by I. Panas (f ∈ [2, 3]). This
is the case for all the reference wave functions, and can be understood from
the stabilization of the ground state from the introduction of the Coulomb
hole, as mentioned previously. Again the correction is seen to be only slightly
dependent of the quality of the ab initio method it is applied to. For He the
ground state of the FCI wave function is lowered by : EΣ+

g ,regFCI−EΣ+
g ,FCI =

3781.67 cm−1, and this is roughly the same increase seen for all the excitation
energies in the f=2.0 regFCI calculations.
HF excitation energies are generally too high, and therefore the regHF ex-
citation energies are even worse. Small CAS wave functions give too small
excitation energies for He, and applying the correction in these cases you get
an improvement. For Ne the smallest CAS wave function give too large ex-
citation energies leaving the Panas correction no chance for improving this.
Though the main deficiency of a HF wave function for He is expected to be
the lack of dynamic correlation it is obviously not possible to improve the
excitation energies by the use of an effective dynamic correlation functional.
This suggests that you need to work with a more flexible wave function as a
small active space CASSCF, before a dynamic correlation correction can be
expected to be a success. I will comment further on this in the next section.

7.6 Potential Energy Surfaces And Spectro-

scopic Constants

To see how the Panas correction behaves at different inter atomic distances,
the potential energy surface of H2 was calculated, see figure 7.6.1. Since there
is an ionic contribution to the HF wave function at all inter atomic distances,
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Figure 7.6.1: HF and CAS (1σg1σu) potential energy surface of H2. An uncon-
tracted ano-basis is used [12s8p].
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the Panas correction will have an effect at all distances. Being able to dis-
sociate the molecule correctly, the CAS and regCAS curves coincide at large
inter atomic distances and the effect of the Panas correction dies correctly
off as the correlation energy of the isolated atoms is zero. The results of the
geometry optimization of H2 with HF, CAS and FCI wave functions are given
in table 7.6.5. With an experimental equilibrium bond length of 0.74144Å
it is seen that the HF approximation overestimates binding, and applying
the Panas correction you get even worse results. The small CAS (1σg1σu)
underestimates binding in the H2 molecule, and the corrected CAS produces
a bond length close the experimental one. This situation is similar to the
one seen for the excitation energies of He. For calculation of properties, the
HF wave function seems to be incapable of benefiting from the introduction
of a coulomb hole. A more flexible wave function like a small CAS is needed,
even if static correlation effects are not expected to be important near the
equilibrium geometry.
Using the Panas correction in geometry optimizations it will be favorable for
electrons to be close to each other since this produce the largest effect from
the correction. As a consequence bonds will shorten. This must be related
to the fact that it has not been taken into account that the coulomb hole
will also have an effect on the nuclear-electron attraction energy. As the
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Coulomb hole reduces the space taken by the electrons Vne should also be
reduced to counter balance the correction to Vee. To make a correction for
this, that might improve the performance of the regularized HF approach,
one could attempt to deduce the modified one-electron density (ρ1) by inte-
gration of the modified two-electron density (ρ2) for the calculation of Vne.
This is not an easy task however since the correction enters the two-electron
integrals and not directly the two-electron density. One could regard the
Panas correction as a modification of the density

Vee[ρ] =

∫∫
ρ′2(r1, r2)

r12

dr1dr2 (7.6.1)

with ρ′2(r1, r2) = ρ2(r1, r2)erf(µr12), but since µ depends on every exponent
in the basis set there is no straight forward way of finding ρ′1 from ρ′2.

The conclusion that spectroscopic constant obtained from HF theory does
not benefit from the employment of a simple correlation functional has been
reached by others as well. J. M. Pérez-Jordá et al. [19] use various den-
sity functionals together with Hartree-Fock and Generalized-Valence-Bond
(GVB) wave functions to calculate spectroscopic constants (Re, ωe and De).
They use the exact Hartree-Fock exchange, which makes their approach sim-
ilar to that of I. Panas, and the following quote from their article agrees with
the conclusion made here : ”. . . it becomes clear that correlation corrections
to Hartree-Fock Re or ωe have little predictive value, unless the Hartree-Fock
description of the molecular bond is qualitatively correct.”

7.7 Analysis Of Two-Electron Integrals

To investigate what kind of changes the integrals undergo from the cor-
rection a program was made to keep statistics on the absolute and rela-
tive differences of regularized and unregularized integrals. These are pre-
sented in table 7.7.1 for a calculation on H2O. If the coulomb hole is ex-
pected to be a small perturbation to the wave function, the integrals are
not expected to change dramatically, and the majority of the relative dif-
ferences are of the order 10−2-10. Some are seen to be of the order 103-
104 though. Integrals purely over s-functions (not shown here) will only
involve the zeroth order Boys function, and if an uncontracted basis is used
you will only get positive integrals (F0(x) ≥ 0 ∀ x ∈ [0,∞[), and as
θ · F0(αθ

2R2
PQ) ≤ F0(αR

2
PQ) ∀ RPQ ∈ [0,∞[, you are guaranteed to get

relative differences of magnitude less than 1. The picture is more compli-
cated for integrals over basis functions of angular momentum since these
involve linear combinations of higher order Boys functions of which some
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Table 7.7.1: Absolute and relative difference of the two-electron integrals in
a H2O calculation, using a cc-pVTZ basis.

Class. nr. Interval Abs. Diff. Rel. Diff
1 10E-16 - 10E -8 79 0
2 10E -8 - 10E -7 82 0
3 10E -7 - 10E -6 429 5
4 10E -6 - 10E -5 3758 32
5 10E -5 - 10E -4 22193 392
6 10E -4 - 10E -3 96987 3077
7 10E -3 - 10E -2 177880 33795
8 10E -2 - 10E -1 45467 204318
9 10E -1 - 10E 0 3134 103938

10 10E 0 - 10E 1 50 4069
11 10E 1 - 10E 2 2 392
12 10E 2 - 10E 3 0 39
13 10E 3 - 10E 4 0 4
Sum 350061 350061

are negative. The linear combinations quickly become big and since each
term in the linear combination is affected differently by the correction, de-
pending on the exponents of the charge distributions, you could for example
experience that two terms canceling each other in the unregularized scheme,
suddenly contribute to the total value of the integral. It becomes even more
complicated if contracted basis functions are used, but nevertheless, when
comparing two integrals, one must still be able to order the uncorrected and
corrected integral so that you can compare them for each order of the Boys
functions entering the integral. This way you can get an idea how each term
in the linear combination changes. The one-center integrals are expected to
be effected the most by the correction and for some n’th order term you get
(RPQ = 0, τ = c · η2)

√
ccnFn(cR2

PQ)−√ττnFn(τR2
PQ) =

√
ccn

1

2n+ 1
−√cηcnη2n 1

2n+ 1
=

1

2n+ 1

√
ccn(1− η2n+1) =

√
ccnFn(cR2

PQ)(1− η2n+1)

⇓
rel. diff. = (1− η2n+1) (7.7.1)

The question is what values η can take. For point charges η becomes 1, and
the relative difference is zero, as should be the case. If the two exponents of
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the charge distribution are identical, µ becomes :

µ2 =
α + β

2
+

√(
α+ β

2

)2

+
α · β
f2

= α+ α

√
1 + f2

f2

⇓

η2 =
f2µ2

c+ f2µ2
=

f2α(1 +
√

1+f2

f2
)

1
2
α + f2α(1 +

√
1+f2

f2
)

=
f2(1 +

√
1+f2

f2
)

1
2

+ f2(1 +
√

1+f2

f2
)

(7.7.2)

This means that for charge distributions of equal exponent the ratio of the
uncorrected integral that is to be thrown away is independent of the size of
the exponents. For f=2.0 this means that for integrals over s-type charge
distributions with equal exponents, the relative difference between the regu-
larized and unregularized integrals should be 1 − η1 = 0.028263. This is in
agreement with the results for He in a basis of s-functions (see table 7.7.2).
When keeping β fixed the η2-function can be plotted as a function of α. Fig-
ure 7.7.1 reveals that the value of η when the two exponents are equal, is
actually a minimum (with magnitude determined by f), as η has the right
properties in the limits α → 0 and α → ∞. It has hereby been established
that for a fixed f-value, each order of the Boys function entering an electron
repulsion integral can at most experience a change as described in 7.7.1 with
η2 given by 7.7.2. The relative difference function is seen in figure 7.7.2. This
function is seen to be an increasing function, and already terms in fourth or-
der in an integral, will be reduced by a factor of approximately 0.8. Off course
using a different f-value the changes are less dramatic, but still for integrals
over fairly compact Gaussians involving other than s- or p-functions a large
absolute difference can be expected. In figure 7.7.3 the Boys functions of
orders 0 to 4 are plotted. The regularization is seen to behave as predicted
by (7.7.1) at Rpq=0. The absolute difference seems to be fairly constant as
n is increased meaning that the relative difference increase.

A fundamental property of the two-electron integral matrix is that it
should be positive definite. If this is not the case a spurious two electron at-
traction can occur. Furthermore this property forms the basis for using the
Cauchy-Schwarz inequality as a tool to screen away integrals that can safely
be neglected without loss of accuracy. Having seen how the Panas correction
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Table 7.7.2: Regularized and non-regularized integrals from a He calculation
in an uncontracted s-basis.

ijkl non− reg (ij|kl) reg (ij|kl) (nonreg − reg)/nonreg
1 1 1 1 0.705399131447E+01 0.685462113789E+01 0.282634564867E-01
2 1 1 1 0.470458468567E+01 0.457740869042E+01 0.270323532781E-01
2 1 2 1 0.321545590771E+01 0.312457600958E+01 0.282634564867E-01
2 2 1 1 0.468131864745E+01 0.458769961988E+01 0.199984309160E-01
2 2 2 1 0.333265665603E+01 0.325154154591E+01 0.243394740282E-01
2 2 2 2 0.374855864114E+01 0.364261141710E+01 0.282634564867E-01
3 1 1 1 0.244075512713E+01 0.237722390338E+01 0.260293312698E-01
3 1 2 1 0.168281437143E+01 0.163553242339E+01 0.280969480913E-01
3 1 2 2 0.177209896760E+01 0.172664799128E+01 0.256481027036E-01
3 1 3 1 0.883574985395E+00 0.858602102242E+00 0.282634564867E-01
3 2 1 1 0.315159293664E+01 0.310216016977E+01 0.156850100479E-01
3 2 2 1 0.227958732614E+01 0.223325950185E+01 0.203228995683E-01
3 2 2 2 0.266361556329E+01 0.259117916144E+01 0.271947659568E-01
3 2 3 1 0.122030316401E+01 0.119349091247E+01 0.219717954771E-01
3 2 3 2 0.193324019282E+01 0.187860014275E+01 0.282634564867E-01
3 3 1 1 0.288400439458E+01 0.285727821568E+01 0.926703820275E-02
3 3 2 1 0.212679845792E+01 0.209911589987E+01 0.130160702113E-01
3 3 2 2 0.261924518346E+01 0.256323662626E+01 0.213834724413E-01
3 3 3 1 0.114833692863E+01 0.113160590978E+01 0.145697821204E-01
3 3 3 2 0.196650706593E+01 0.191695500923E+01 0.251980059247E-01
3 3 3 3 0.213026272319E+01 0.207005413541E+01 0.282634564867E-01

Figure 7.7.1: η2 as a function of α for fixed β (0.1, 0.5, 1.0, 2.0, 3.0, 4.0).
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Figure 7.7.2: (1-η2n+1) as a function of the order of the Boys functions enter-
ing the electronic repulsion integral. The upper curve is for f=2.0, the lower
for f=2.5
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Figure 7.7.3: The regularized and unregularized Boys Functions of orders 0
to 4
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can sometime affect the integrals quite dramatically it should be investigated
whether this property of the integral matrix is preserved. A large number
of calculations were performed and in most cases the eigenvalues of the two
electron integral matrix were all positive. It did however also happen that
negative eigenvalues of rather significant magnitude appeared in the diago-
nalized matrix. This was for example the case in the simple example of using
only an s-basis on the oxygen atom in water (table 7.7.3). It should be noted
that the negative eigenvalues aren’t present in the unregularized limit, and
their existence in the regularized scheme is clearly unacceptable. Moreover
the negative eigenvalue seem to be very hard to get rid of. Their are of course
most dominant at 1/f2=0.25, but even at 1/f2=0.1 there is an eigenvalue with
a value of -2.45·10−9. From 1/f2=0.08 and toward the uncorrected method
they disappear.

7.8 Summary

The following conclusion on the use of the Panas correction can be made :
Testing the Panas proposal of a Coulomb hole model has revealed that

• The correction does not generally improve the properties obtained from
HF theory. Small CAS wave function are improved but the correction
shows limited dependence on the quality of the reference wave function.

• A deeper analysis of the density could reveal why the HF wave function
does not benefit from the correction. An improvement of the method is
expected if the modified one-electron density could evaluated and used
in the calculation of Vne.

• In certain cases the matrix of two-electron integrals is not positive
definite.

• The relative difference between regularized and unregularized integrals
can become large, and there might be a need to refine the expression
for the ’cut-off’ (µ) to depend on the angular momenta of the functions
entering a given integral.
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Chapter 8

Conclusion

The Coulomb hole model as proposed by I. Panas is abandoned on the basis
of the tests summarized above. The model is not able to systematically im-
prove on methods where dynamic correlation is not accounted for. Good re-
sult obtained with the Coulomb hole models can, as seen for the regCASSCF
calculations, be due to fortunate error cancellations.
The idea of releasing HF and CACSF type wave functions from dealing
with short range interacting electrons is however not abandoned, but simply
throwing away part of the short range two electron potential introduces some
unwanted effects like over binding of molecules and non positive definite two
electron matrices. A better route is to replace the part of the two electron
potential that is removed by using modified two electron operators by the po-
tential from more efficient methods like DFT. This route is explored further
in the next chapter.
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Chapter 9

Merging Wave Function Theory
and DFT.

9.1 Introduction.

From the previous chapter it became clear the simply removing certain parts
of the short range two electron potential was not a generally applicable ap-
proach to mimic dynamic correlation in HF and MCSCF type wave func-
tions. The classification of short range electronic interactions as the source
of the slow convergence of wave function based methods, i.e the source of
dynamic correlation, is nonetheless valid and the modified operator used by
I. Panas [1,2] provides an easy way of removing short range interactions from
the wave function treatment.
From the failure of the Coulomb hole models a natural next step is to not
neglect parts of the two electron potential but instead replace it with a po-
tential that more efficiently deals with dynamic correlation. DFT is of course
an obvious candidate and the idea of merging wave function theory (WFT)
with DFT is intriguing from both a DFT and WFT point of view. DFT
is known to efficiently deal with short-range interaction electrons, for which
the uniform electron gas is a good model system, but having problems de-
scribing long-range effect. Gradient corrected functionals can be seen as an
attempt to deal with these issues, but the near degeneracy, improper asymp-
totic behavior and self-interaction problems have already been mentioned in
Sec.4.5.6 as well known problems of DFT. Long-range interactions are on
the other hand efficiently handled by Multi-reference wave functions that in
turn are inefficient when it comes to dynamic correlation. The WFT DFT
marriage seems ideal and actually has a long history.
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9.2 The Long-Range Short-Range Separation 61

As early as 1974 Lie and Clementi [3,4] defined a “HF with proper disso-
ciation” reference wave function which basically was a small MCSCF wave
function. They augmented the MCSCF energy with the energy from a repa-
rameterization of the Gombas density functional [5] and fed this functional
with a density that was a rescaled on the basis of the orbital occupation num-
bers. Rescaling the density does not completely rule out double counting of
correlation but nevertheless the approach showed some promise.
The Colle and Salvetti functional [6, 7] of the two particle density has al-
ready been mentioned and its reparameterization in the LYP correlation
functional [8] is a testament of its success in modeling dynamic correlation.
In the context of this chapter the generalization of the Colle Salvetti func-
tional to multi-configurational wave functions [9] should be mentioned.
A. Savin has been involved in numerous WFT DFT hybrid models. Here I
mention the coupling of CI and DFT based on thresholds on the natural oc-
cupation numbers [10]. The method of Miehlich et al. [11] in which a model
system is defined that excludes some of the low lying virtual orbitals of a
CASSCF wave function. Finally a series of proposals based on a long-range
short-range separation of the Coulomb operator [12–18]. The implementa-
tions of WFT DFT hybrid models presented in the following chapters are
based on this idea.
The CI-DFT approach of Grimme and Waletzke in which a CI calculation
is performed in the Kohn-Sham orbitals. Double counting is to some extend
avoided by scaling the off-diagonal elements of the CI matrix by an exponen-
tial expression of the energy gap of the configuration state functions (CSFs)
involved.
The combination of Valence Bond type wave functions with DFT of H.
Stoll [19].
The combination of CASSCF type wave functions with functionals of the
two particle density of McDouall [20]. For further reading this article has
a short review of proposals previously mentioned in the literature, most of
which have been mentioned here.

9.2 The Long-Range Short-Range Separation

The purpose of making a separation of the Coulomb operator into short-range
and long-range parts

Vee = V lr
ee + V sr

ee (9.2.1)

is to allow DFT to treat the short-range interaction electrons while WFT
treats the long-range interactions. From a practical point of view this should
be done smoothly to not introduce any discontinuities in neither the DFT or
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the wave function potential. Furthermore, for testing purposes, a parameter
should be included to allow adjustment of the separation. At the same time
such a separation is a way of addressing the double counting of correlation
problem. A certain part of the interaction space is either treated by DFT or
WFT, never both, and so double counting should be minimal.

The earliest proposal of such a separation is that of A. Savin [13] in which
a Yukawa type potential is used.

Vee = V lr
ee + V sr

ee

=
1− e−µrij

rij

+
e−µrij

rij

(9.2.2)

From a practical point of view this choice of separation is not ideal when used
with Gaussian basis sets since integrals evaluation becomes cumbersome. A
better choice used extensively by A. Savin et al. [10, 14, 15] is based on the
error function, already encountered in the Coulomb hole model of I. Panas
(see Sec. 7).

V lr
ee = W erf,µ

ee (r12) =
erf(µrij)

rij

(9.2.3)

The long-range part (erf , W erf
ee (µr12)) is shown for µ = 1 in Fig.9.2.1. The

long-range shor-range separation of this operator is however not complete in
the sense that the long-range part, as seen on Fig.9.2.1, contributes signif-
icantly for small r12. A sharper separation is obtained by augmenting the
error function with an exponential term that cancels with the error function
for r12 → 0.

V lr
ee = W erfgau,µ

ee (r12) =
erf(µr12)

r12

− 2µ√
π
e−

1
3
µ2r2

12 (9.2.4)

This operator (erfgau) is also tested by Toulouse et al. [16–18] and a similar
operator has also been used in a different context by Prendergast et al. [21].
For comparison between the two operators, the µ of W erfgau,µ

ee is scaled by a
constant so that both operators deviate from the true Coulomb interaction
for approximately the same value of r12. Note that W erfgau,µ

ee does not con-
tribute as much as W erf,µ

ee for small r12 and that both operators are cuspless

( ∂W X
ee

∂r12

∣∣∣
r12=0

= 0) while producing the correct Coulomb tail for large r12.

The longe-range two electron operator is used by the WFT part of a WFT
DFT hybrid and since the modified long-range two electron operators have
been released from dealing with the short-range part of the interaction space
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Figure 9.2.1: Modified two-electron operators used in this work. W erf
ee is

plotted for µ = 1 while W erfgau
ee is plotted for µ = 2.365 to allow a better

comparison of the two operators.

a new convergence behavior of the WFT part is expected. The wave function
will not have to describe the Coulomb cusp and so it is expected that the
basis set does not need to be as flexible as in usual CI or CC wave function
expansions. Likewise a CI type wave function is expected to converge faster
with respect to the expansion in Slater determinants or Configurations State
Functions (CSFs).

The separation of the Coulomb operator in short and long-range parts
through a function of the coupling parameter µ also presents a formal exten-
sion of Kohn-Sham DFT [22] to multi-reference wave functions. The adia-
batic connection [23] can be used to connect the system with a fictitious (the
long-range interacting) system with the true/fully interacting system. This
is a generalization of the adiabatic connection used in Sec.4.5.5 for standard
Kohn-Sham theory and is done in detail in Paper I (p.141). The result is an
energy expression of the multi-reference wave function DFT hybrid model

Ehybrid = 〈Ψµ | Ĥµ
LR | Ψµ〉+ Jµ

SR[ρ] + Eµ
xc−SR[ρ] (9.2.5)

where Ĥµ
LR is the usual Hamilton operator though using the long-range two-

electron interaction (W erf,µ
ee or W erfgau,µ

ee ). Jµ
SR is the short-range Hartree
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energy and Eµ
xc−SR the short-range exchange-correlation energy (see Paper

I for further details). Moreover the adiabatic connection provides a recipe
for constructing the short-range functionals needed in the hybrid methods as
the difference between the Kohn-Sham exchange correlation energy and that
of the fictitious long-range interacting system (see chapter 9.4).

9.3 Implementation of Long-range Integrals.

To evaluate two electron integrals using the long-range operator (erf and

erfgau) it will be needed to calculate integrals using both the erf(µr12)
r12

and

− 2µ√
π
exp(−µ2

3
r2
12) operators. The evaluation of integrals using the erf opera-

tor has already been discussed in conjunction with the Panas Coulomb hole
model (see Sec.7.1). Here we concentrate on calculation integrals with the
erfgau operator. The expressions for the Gaussian ssss integrals using the
erf operator and the exp operator (that make up the erfgau operator) are
given in Appendix B.1 and B.2. These can be slightly rewritten to match
the syntax of the dalton source code and be shown to be proportional to :

(
sasb

∣∣∣∣
erf(µr12)

r12

∣∣∣∣ scsd

)
∼

(
1

α
+

1

β
+

1

µ2

)−1/2

F0

(
− R2

PQ

1
α

+ 1
β

+ 1
µ2

)

(9.3.1)
(
sasb

∣∣∣∣Nexp(−µ
2

3
r2
12)

∣∣∣∣ scsd

)
∼

(
1

α
+

1

β
+

3

µ2

)−3/2

exp

(
− R2

PQ

1
α

+ 1
β

+ 3
µ2

)

(9.3.2)

where α = a + b and RPQ is the distance between the centers of the charge
distributions formed by multiplication of sa with sb and sc with sd. All that
is needed to calculate the integrals of higher momenta is the derivative of
these ssss integrals.

∂

∂Px

F0

(
− R2

PQ

1
p

+ 1
q

+ 1
µ2

)

= −2

(
1

p
+

1

q
+

1

µ2

)−1

XPQ · F1

(
− R2

PQ

1
p

+ 1
q

+ 1
µ2

)
(9.3.3)

∂

∂Px

exp

(
− R2

PQ

1
p

+ 1
q

+ 3
µ2

)

= −2

(
1

p
+

1

q
+

3

µ2

)−1

XPQ · exp

(
− R2

PQ

1
p

+ 1
q

+ 3
µ2

)
(9.3.4)
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The different pre-factors that come from differentiating the erf and exp terms
mean that we cannot just add the zeroth order erf and exp integrals in a
recurrence scheme for higher order integrals. We therefore do the following

1. Evaluate the charge distributions and determine their expansion in Her-
mite Gaussians

2. Enter a loop over blocks of basis functions and a loop over nuclei to
evaluate both the erf zeroth order integrals (R(I,J), (9.3.1)) and the
exp zeroth order integrals (E(I), (9.3.2)) at the same time.

3. For higher angular momenta do the following

DO I = 1,NUC
DO J = 1,JMAX

A = A*1/(1/P+1/Q+1/MUSQ)
B = B*1/(1/P+1/Q+3/MUSQ)
R000(I,J) = A*R000(I,0) + B*E(I)

ENDDO
ENDDO

4. As a final step the total integrals are calculated by multiplying the pre-
factors, the expansion coefficients and the 2XPQ, 2YPQ, 2ZPQ factors.

The extra memory needed for calculating the erfgau integrals only amount
to the memory needed to store the extra E(I) numbers (within each loop of
blocks of basis functions). The recurrence relations for the exp terms are done
simultaneously with the erf terms and therefore the extra time associated
with the computation of the erfgau integrals is minimal as seen if Fig.9.3
for H2O.

Table 9.3.1: Timings for the two electron integral calculation in an H2O
calculation in the cc-pVQZ basis set.

Operator Time
1

r12
15.19s

erf(µr12)
r12

15.11s
erf(µr12)

r12
+N · exp(−a · r2

12) 15.49s

While the long-range integrals have been implemented very efficiently the
short-range are evaluated in a “crude” manner for this initial implementation.
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These are needed for computing the short-range Hartree energy (9.2.5) and
are simply calculated by evaluating the regular two electron integrals using
the full Coulomb operator and subtracting the set of long-range integrals.
In a future more efficient implementation these integrals could be evaluated
using density fitting techniques which would bring the scaling down from N4

to N3 [24,25]. A next step could be to use Fast Multipole Method techniques
for computing the long-range integrals [26, 27].

9.4 The short-range Density Functionals.

9.4.1 Short-range LDA

As mentioned the adiabatic connection provides a recipe for the construction
of short-range density functionals as the difference between the exchange cor-
relation energy in the Kohn-Sham limit (µ = 0) and the exchange correlation
energy at intermediate interaction µ. A first approximation to a short-range
functional is provided by the Local Density Approximation (LDA). Toulouse
et al. derive the short-range LDA functional in detail in [16].

The correlation energy for a system of intermediate long-range interaction
(εµ

c ) is obtained from Coupled-Cluster calculations with double excitations
or from Fermi-hypernetted-chain (FHNC) calculations (see [16] for details)
using the long-range two-electron operator. The short-range correlation en-
ergy per particle1 (ε̄µ

c )can then be expressed from the long-range correlation
energy (εµ

c ) and the usual LDA correlation energy (εc)

ε̄µ
c (rs) = εc(rs)

(
1− εµ

c (rs)

εµ→∞
c (rs)

)
(9.4.1)

where rs is the Wigner-Seitz radius (rs = (3/(4πρ))1/3). This is seen to re-
duce to the usual LDA correlation energy in the limit µ → 0 and vanish
at µ → ∞. Note that a practical implication of this is that the coupling
between the short-range and long-range part is also put in the functional.

Toulouse it et al. computed the short-range correlation energy for a series
of µ and rs values and fitted this to the expression

ε̄c(rs) =
εµ

c (rs)

1 + c1(rs)µ+ c2(rs)µ2
(9.4.2)

1Related to the global correlation functional by : Ēµ
c [ρ] =

∫
ε̄µ
c (r)ρ(r)dr
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where the expressions for the coefficients c1 and c2 for both the erf and
erfgau operators are given in [16]. The short-range LDA (SRLDA) cor-
relation functional is therefore basically rescaling of the VWN correlation
functional [28].

The exchange energy functional can be computed analytically from the
uniform electron gas with modified interaction. The end result given in [16]
is

ε̄µ
x,erf(rs) = −

(
18

π2

)1/3
1

rs

[
3

8
− A

(√
πerf

1

2A
+ (2A− 4A3)e−1/(4A4) − 3A+ 4A3

)]

(9.4.3)

ε̄µ
x,erfgau(rs) = ε̄µ

x,erf(rs)

−
(

18

π2

)1/3
1

rs

[
A

(√
πerf

1

2B
+ (2B − 16B3)e−1/(4B4) − 6B + 16B3

)]

(9.4.4)

where A = µ/(2KF ), B = µ/(2
√

3KF ) and KF = (3π2ρ)1/3

The quality of the SRLDA is also investigated by Toulouse et al. [17,18] by
comparing the exchange and correlation energy from the SRLDA functional
and from accurate calculations of the exchange correlation energy along the
adiabatic connection. It becomes clear that SRLDA is very accurate for
large and intermediate µ values but fail near the Kohn-Sham end of the
adiabatic connection (µ→ 0). More specifically in this region SRLDA over-
estimates the exchange energy but underestimates the correlation energy.
The observation of the behavior of the SRLDA functionals along the adi-
abatic connection can be understood from the very motivation for making
the WFT DFT hybrid. Just like WFT has problems dealing with closely
interacting electrons, DFT has problems describing long-range interactions
(wrong asymptotic behavior and self-interaction has already been mentioned,
Sec.4.5.6). Therefore for an intermediate or large value of µ the functionals
only deals with electrons on a short-range scale and the uniform electron gas
is a good approximation. Toulouse et al. even derive an expansion of the
exchange and correlation energy in terms of the coupling parameter [18] and
show that for large µ the leading terms of this expansion are indeed local
functionals. SRLDA is therefore expected to perform well except for small
µ. As it will be seen for larger systems, it is however not always possible to
stay out of this region if the optimal WFT DFT mixing is to be achieved.
Therefore it is of interest to search for short-range functionals that perform
better in the small µ region.
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9.4.2 Beyond Short-range LDA

The SRLDA correlation functional was shown to be underestimated the cor-
relation energy energy by Toulouse et al. [17,18] and find that this error must
be associated with the inhomogeneousity of the density. In inhomogeneous
systems the electrons are correlated on a shorter distance than in the uniform
electron gas and the failure of SRLDA for small µ values can be identified as
long-range effects being spuriously transferred to the functional treatment.
This is the motivation for improving the SRLDA functional by defining a
local µ that is larger of equal to the global µ following the understanding
that only truly short-range effects should be treated by LDA.

µeff(r) = max(µlocal(r), µ) (9.4.5)

A number possibilities for choosing µ is suggested by Toulouse et al.. Here
we will test the use of the inverse of the Wigner-Seitz radius as an estimate
of the typical interaction length of the system.

µlocal(r) =
1

rs

(9.4.6)

It is noted that this idea cannot be transferred to the SRLDA exchange
since this overestimated the exchange energy. Using an improved estimate
for the short-range exchange is however needed together with the improved
correlation functional since otherwise the errors of the short-range exchange
functional would dominate the errors of the total SRLDAµ,local functional.
Here we test the µlocal correlation functional together with the short-range
Hartree-Fock exchange.

A more natural extension to the SRLDA functional is to consider gradient
corrections. Toulouse et al. performed this extension as well [17] and here
I mentioned the Gradient Expansion Correction (GEA) to SRLDA and the
extension of the PBE [29] functional to short-range interaction. Especially
the PBE looks promising, providing good estimates of both the correlation
and exchange energy of Be [17]. The use of this functional in the CI-DFT
and MCSCF-DFT hybrid models is left for future research.

A third proposal of an improved SRLDA functional is the interpolation
scheme of Toulouse et al. SRLDA is nearly exact for large µ and since func-
tionals far better than LDA is known near the Kohn-Sham limit of the adia-
batic connection, a µ dependent functional could therefore be constructed as
an interpolation between an available functional in the Kohn-Sham limit and
an LDA/exact functional in the large µ region. Two such proposal are made
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in [18] of which I will mention the weighted interpolation for the exchange
energy.

ε̄µ
x = (εKS−DFT

x − ε̄LDA,µ=0
x )w(µ) + ε̄LDA,µ

x (9.4.7)

where w(µ) is the weight function that should cut off the contribution from
Kohn-Sham functional as soon as LDA becomes near exact. This domain is
well estimated by 1/rs and Toulouse et al. suggest to use w(µ) = erfc(rsµ).
The µ dependent functional is now an available functional known from stan-
dard Kohn-Sham theory in the µ = 0 limit (B3LYP, PBE,. . . ), but the µ
dependent SRLDA function for µ > 1/rs. The performance of this func-
tional is also left for future investigations.



Chapter 10

The MCSCF-DFT model

The WFT DFT hybrid model has been implemented in a development ver-
sion of dalton as a hybrid between the MCSCF wave function and DFT.
The hybrid model is however completely general and other short-range long-
range separation and short-range functionals can easily be implemented. The
details of the algorithm is given in Paper I (p.141). Double counting of cor-
relation effects is avoided by the long-range short-range separation of the
Coulomb operator (Sec.9.2) which has the following advantages :

1. This short-range DFT scheme can be defined with an adiabatic connec-
tion [30], making it in principle an exact theory, and it thus presents
a straightforward generalization of Kohn-Sham DFT theory to multi-
reference wave functions.

2. As a consequence such a scheme also allows us to switch continuously
between the regular Kohn-Sham DFT and the pure wave function sit-
uation and thereby never loose control of the DFT WFT mixing.

3. Although the approximate functionals cannot be the same as in Kohn-
Sham DFT (this would give double counting), one can use the same
ideas as in standard DFT to construct them.

4. The wave function part of the problem has a non-singular two-electron
operator and a short wave function expansion is therefore expected to
be sufficient.

The choice of an MCSCF wave function as the WFT part of the hybrid is
clear as MCSCF theory presents a more efficient way of recovering static
correlation effect than CI which is used in previously presented WFT DFT
hybrid models [10, 11, 13–15]. The MCSCF-DFT hybrid retains all the ben-
efits of the MCSCF it is built on [31–36], meaning that it is :
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a) second order since the energy is Taylor expanded to second order.

b) direct, in the sense that the Hessian is never evaluated explicitly, but
projected onto a set of trial vectors generated iteratively.

c) step-restricted, since the “walk” on the energy hypersurface is restricted
to a trust region. This region is dynamically updated to guarantee
convergence.

d) spin-restricted with full implementation of spin symmetry and point
group symmetries of D2h and subgroups.

In Paper I a specific MCSCF-DFT hybrid model is tested. The long-range
short-range separation is made using the erfgau operator (see Sec.9.2.4)
and the short-range LDA (see Sec.9.4.1) is used for the functional part. The
following main conclusions are drawn from these investigations.

• In preliminary few electron calculations both the LDA and MCSCF
energy (µ = 0 and µ = ∞ limits of the hybrid) is greatly improved
by the WFT DFT mixing giving near exact energies for He and H2 in
cc-pVDZ and cc-pVTZ [37] basis sets.

• These calculations also indicate that the basis set requirements for
the MCSCF-DFT hybrid is comparable to that of regular Kohn-Sham
DFT. This can be understood from the fact that when comparing to
the standard correlated methods (CC, CI, . . . ) the same flexibility in
the basis set is not needed since the wave function part of the hybrid
has been released from dealing with dynamic correlation.

• The occupation numbers of the 1s natural orbital of the regular MCSCF
method compared to the MCSCF-DFT method showed that transfer
of dynamical correlation effects from the wave function part of the
hybrid to the DFT part meant that the 1s orbital is closer to being
doubly occupied, indicating that a shorter wave function expansion of
the MCSCF-DFT hybrid is to be expected.

• Calculations on Be and H2O showed than when going to molecules
with core electrons it becomes impossible to find a good value for the
coupling parameter µ that gives a good description of both core and
valence electrons. This can be understood from the different nature of
core and valence electrons meaning that the correlation requirements
are different for core and valence. To put it differently the optimal µ
value is density dependent. However having a non-global µ in the wave
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function part of the hybrid model is highly impractical and therefore
better short-range functionals are needed that are able to give a better
description of both core and valence, i.e take the shell structure into
account. The functionals that go beyond LDA mentioned in Sec.9.4.2
are good candidates.

• A spin-off of this implementation is the quadratically convergent hybrid
of Hartree-Fock and short-range DFT in cases where static correlation
in not important. Being a mixture of Hartree-Fock and DFT it presents
an interesting alternative to regular hybrid DFT like B3LYP.

Besides the investigations into developing better short-range functionals that
will hopefully allow a WFT DFT hybrid method with a global (preferably
small) µ value, it will also be of interest to extend the MCSCF-DFT algorithm
to allow calculations of linear and non-linear response properties. Likewise
the implementation of molecular gradients and Hessians is a natural extension
to be able to perform geometry optimizations with the MCSCF-DFT method.



Chapter 11

The CI-DFT model

The following chapter presents the CI-DFT hybrid as implemented in a de-
velopment version of dalton [38]. In this scheme the DFT contributions are
simply added as contributions to the CI energy and do not directly enter the
CI wave function optimization, unlike the MCSCF-DFT model presented in
chapter 10 where the MCSCF orbitals are subject to the full effect of the
density functional under optimization. The CI optimization can of course
be considered a special case of the more general MCSCF optimization and
therefore for information on the DFT contributions to the CI gradient and
Hessian I refer to chapter 10. Likewise the energy expressions presented in
the following section are also general and apply to the MCSCF-DFT hybrid
as well.

11.1 Implementation.

In the reduced space CI method the set of orbitals are devided into the
inactive (the “nearly” doubly occupied) orbitals and the active orbitals. The
CI energy can be written as

ECI = VNN + Eη + Tr (Fc ·Dv) + 1
2

∑
uvxy

(uv | xy)Puv,xy (11.1.1)

where :

• u,v,x,y are indices that run over active orbitals.

• Puv,xy is the two-electron density matrix.

• D denotes a one-electron density matrix. Dc being the core part, Dv

the valence part.
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• Fc is the core Fock matrix.

Fc = h1 + G ·Dc (11.1.2)

G = J−K (11.1.3)

where J is the two-electron classical Coulomb repulsion. K is the two-
electron non-classical exchange repulsion.

• Eη is the inactive energy containing the one electron energy (kinetic en-
ergy and nuclei-electron attraction energy) and the two-electron energy
over the core-electrons.

Eη = 1
2
Tr ((Fc + h1) ·Dc) (11.1.4)

• VNN is the repulsion of the nuclei.

The third term in (11.1.1) describes the one-electron energy and the core-
valence two-electron interaction while the fourth terms is the valence two
electron interaction. The CI problem is linear as seen from the linearity of
the energy in Dv and Pv. The CI energy is thus entirely a function of the
valence (one- and two-body) density matrices.

The goal is to formulate the CI-DFT energy in terms of the valence density
as well, making it linear in the valence density. The WFT DFT energy is
given in Eq.9.2.5 and adopting the core valence separation of the orbital set
the CI-DFT energy can be written as.

ECI−DFT = VNN + Eη + Tr
((

Fc,lr + Jc,sr
) ·Dv

)
+ 1

2

∑
uvxy

(uv | xy)lr Puv,xy

(11.1.5a)

+ 1
2
Tr (Dv · Jsr ·Dv) (11.1.5b)

+ [Esr
xc(D)− Esr

xc(D
c)] (11.1.5c)

where the inactive energy Eη now is

Eη = 1
2
Tr

((
Fc,lr + h1

) ·Dc
)

+ 1
2
Tr (Dc · Jsr ·Dc) + Esr

xc(D
c) (11.1.6)

Fc,lr = h1 + Glr ·Dc (11.1.7)

and,
Jc,sr = Jsr ·Dc (11.1.8)

Two problems arise in the terms (11.1.5b) and (11.1.5c).



11.1 Implementation. 75

1. (11.1.5b) describes the short-range Coulomb contribution to the valence
electrons and is seen not to be linear in Dv

2. (11.1.5c) The exchange-correlation term does not factorize in core and
valence components

Esr
xc(D

c + Dv) 6= Esr
xc(D

c) + Esr
xc(D

v) (11.1.9)

and therefore the exchange-correlation terms also is not linear in Dv

This is addressed by expressing these terms in a reference density

Dref = Dc + Dv,ref

⇓
D−Dref = Dv −Dv,ref = δ (11.1.10)

ad.1) Using the reference density this term becomes

1
2
Tr (Dv · Jsr ·Dv) = 1

2
Tr

((
Dv,ref + δ

) · Jsr · (Dv,ref + δ
))

= 1
2
Tr

(
Dv,ref · Jsr ·Dv,ref

)
+ Tr

((
Dv,ref · Jsr

) · δ) +O(δ2)

= −1
2
Tr

(
Dv,ref · Jsr ·Dv,ref

)
+ Tr

((
Dv,ref · Jsr

) ·Dv
)

+O(δ2)

(11.1.11)

and (11.1.5b) is now approximated by a term in some reference density
and a term linear in Dv as wanted.

ad. 2) This term is Taylor expanded around the reference density.

[Esr
xc(D)] = Esr

xc(D)|D=Dref +
∂Esr

xc(D)

∂ρ

∣∣∣∣
D=Dref

(D−Dref ) +O(δ2)

= Esr
xc(D

ref ) + vsr
xc|D=Dref (Dv −Dv,ref ) +O(δ2) (11.1.12)

Apparent possibilities for the reference density Dref is the Hartree-Fock
density or the density from a regular DFT calculation. The advantage of
the latter would be that the DFT density in general will be better than the
Hartree-Fock one, and in particular the core-density will be optimal for the
subsequent CI-DFT hybrid.

Collecting the terms we can rewrite equations (11.1.5a)-(11.1.5c) to pro-
duce a CI-DFT energy that is now linear in the valence density.

ECI−DFT = VNN + ECI−DFT
µ + Tr

((
Fc,lr + Jc,sr + Jv,ref,sr + vref,sr

xc

) ·Dv
)

+ 1
2

∑
uvxy

(uv | xy)lr Puv,xy (11.1.13)
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with

ECI−DFT
µ = 1

2
Tr

((
Fc,lr + h1

) ·Dc
)

+ 1
2
Tr (Dc · Jsr ·Dc)

− 1
2
Tr

(
Dv,ref · Jsr ·Dv,ref

)− vref,sr
xc Dv,ref + Esr

xc(D
ref )

(11.1.14)

Fc,lr = h1 + Glr ·Dc (11.1.15)

Jc,sr = Jsr ·Dc (11.1.16)

Jv,ref,sr = Jsr ·Dv,ref (11.1.17)

vref,sr
xc =

∂Esr
xc(D)

∂ρ

∣∣∣∣
D=Dref

(11.1.18)

It should be noted that the trick of expressing the DFT contribution in
terms of a reference density resembles that of J. Harris [39] used to simplify
the interactions of weakly bound fragments in molecular DFT calculations.
In this formulation the CI-DFT model can therefore be implemented by
making the appropriate corrections to the inactive energy, the core Fock
matrix and using the long-range two-electron integrals in the two-electron
integrals over active indices. Having added the short-range valence Hartree
and exchange correlation potential to the core Fock matrix enables us to make
“CI macro iterations”, in which we redo the CI-DFT calculation with an
updated reference density. The macro iterations can therefore be continued
until self-consistency has been reached to get a converged CI-DFT density.
With a good starting reference density (like the Hartree-Fock density) the
number of macro iterations is expected to be small.

11.2 Applications.

It was found in the MCSCF-DFT chapter (10) that the currently available
short-range functionals do not enable us to define a good global value for the
coupling parameter µ that gives a good description of both core and valence
electrons in many electron systems. It is therefore pointless at this stage to do
direct comparisons between CI-DFT and MCSCF-DFT calculations on many
electron systems, and therefore comparisons will only be made on Helium and
Beryllium. This section will furthermore try to add to the investigation done
with MCSCF-DFT in Paper I (141) and present some calculations done with
some functionals that try to improve on the LDA.



11.2 Applications. 77

Figure 11.2.1: Ground state energy of He using the truncated CI-DFT,
MCSCF-DFT and the FCI-DFT model using a cc-pVTZ basis set and the
erfgau two-electron operator.
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Figure 11.2.2: Contributions to the ground state energy of He in the trun-
cated CI-DFT model, using the cc-pVTZ basis set and the erfgau two-
electron operator.
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11.2.1 He

Like in Paper I (p.141) Helium is used as a good test for the quality of the
short-range functionals. Helium is mainly dynamically correlated and the
CI-DFT model should perform well. In Fig. 11.2.1 the µ-dependence of the
ground state energy of He is shown for the truncated CI-DFT and MCSCF-
DFT (with the 1s,2s,2p orbitals in the active space) models as well as the
FCI-DFT model. It is seen that near the Kohn-Sham end of the adiabatic
connection (µ → 0) the three curves are identical, as they should be since
in this region the two-electron part of the energy is described by the density
functional. The maximum of the curves in this region is also discussed in
Paper I (p.141) and is nicely explained by Toulouse et al. [18] where it is
shown that for values of µ close to zero the error of the short-range LDA
functional grows with increasing µ, until µ ≈ 1 where the short-range LDA
exchange becomes close to the true short-range exchange energy (µ ≈ 2 for
the correlation energy) [18].
On the right-hand side of the optimal µ-value (∼ 4) the CI-DFT, MCSCF-
DFT, and FCI-DFT curves become different. Of course the FCI-DFT curve is
below the truncated CI-DFT curve but it is also interesting that the MCSCF-
DFT curve, having the same active space as the CI-DFT model, is a lot closer
to the FCI-DFT curve than to the CI-DFT curve. This shows that when the
two-electron interaction is described by the wave function part of the hybrid
the optimized orbitals of the MCSCF-DFT model are far better at recovering
the correlation energy. It is also nice to see that even though the MCSCF-
DFT and FCI-DFT curves are much closer to the experimental ground state
energy at the wave function end of the adiabatic connection (µ → ∞) all
the three curves have the same optimal µ-value and optimal energy. This
clearly indicates that the hybrid models take into account how much corre-
lation is already accounted for in the wave function part and avoids double
counting. The fact that the hybrid curves go below the experimental ground
state energy is not a sign of double counting but a limitation of the short-
range functional. Had we known the exact functional and done the FCI-DFT
curve in a complete basis set the FCI-DFT curve would have been a straight
line on top of the line indicating the experimental ground state energy. The
FCI-DFT curve in Fig. 11.2.1 is not done in a complete basis set, as seen
from the fact that the curve is 0.024 Hartree from the experimental line at
µ→∞, and therefore this FCI-DFT curve should not be a straight line, but
instead have a minimum at the optimal µ.

From the curves on Fig. 11.2.1 it is clear that there is a smooth transfer
of energy contributions from the functional part of the hybrid to the wave
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function part as µ is increased from the optimal value to infinity. To further
show this the three most important energy contributions that make up the
CI-DFT energy are plotted in Fig. 11.2.2 along with the total CI-DFT energy.
That is, the CI energy using the long-range part of the two-electron oper-
ator (ELR), the short-range Hartree energy (ESR

Hartree), and the short-range
exchange correlation energy (ESR

xc ). These are the three energy contributions
on the right-hand side of Eq. 9.2.5 in that order. It is seen that even as µ is
increased from the optimal value and the CI-DFT curve starts to flatten out,
the short-range Hartree and exchange correlation energies still contribute to
the total energy. Actually even after long-range CI energy is getting indis-
tinguishable from the curve of the total energy, the short-range Hartree and
exchange correlation curves still contribute but to a high degree cancel with
each other.

11.2.2 Be

For Helium only the erfgau curves where shown. For Beryllium both the erf
and the erfgau curves are plotted in Fig. 11.2.3 using the truncated CI-DFT
model with the 1s, 2s, and 2p orbitals in the active space. Note that the µ
values of the erfgau operator has not been scaled as otherwise done in Fig.
9.2.1, since here a comparison with the erfgau curve of Helium will later be
made. From the CI-DFT curves in Fig. 11.2.3 it is noticed that the erfgau
operators gives a lower energy than the erf operator with the erfgau curve
being closer to the B3LYP energy which in turn is close to the experimen-
tal ground state energy (-14.667 Hartree). This is explained by the cleaner
short-range long-range separation of the erfgau operator in which a larger
part of the short-range interaction space is assigned to the density functional.

Unfortunately it is also observed that the optimal µ for Beryllium (µ ≈
10) is far from the optimal value for Helium (µ ≈ 4). This system depen-
dence of µ is also discussed in Paper I and is explained by the limitations of
the simple short-range LDA ansatz. In Sec.9.4.2 various proposals for going
beyond LDA were discussed. Here a few of proposals will be tested.

The SRLDA functional with local µ has been implemented and is tested
on Beryllium in Fig. 11.2.4 with the CI-DFT model with the same active
space as before (1s2s2p) and with two different short-range exchange func-
tionals. The dotted curve is with short-range Hartree-Fock exchange and the
dashed curve is with the usual short-range LDA exchange. The full curve
is the usual CI-DFT with both exchange and correlation described by the
short-range LDA (same curve as in Fig. 11.2.3). While it is clearly shown by
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Figure 11.2.3: Ground state energy of Be in the truncated CI-DFT model,
using the cc-pVTZ basis set and the erf and erfgau two-electron operators.
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Figure 11.2.4: Ground state energy of Be in the truncated CI-DFT model, us-
ing the cc-pVTZ basis, the erfgau two-electron operator, and three different
short-range exchange and correlation functional combinations.
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Toulouse et al. [17] that the local µ improves the short-range LDA functional
and provides a near exact correlation energy for Helium it is evident from
Fig. 11.2.4 that improving the correlation functional and keeping the usual
short-range LDA exchange deteriorates the total exchange correlation func-
tional. It is a well known fact that LDA to some degree rely on cancellation of
errors and when improving the correlation functional this balance is shifted.
Therefore the SRLDA with local µ functional is also tested with short-range
Hartree-Fock exchange. This combination is however also seen to present
no improvement, although the µ = 0 energy accidentally is close to the ex-
perimental ground state energy. When adding the short-range Hartree-Fock
exchange to the CI-DFT energy expression (Eq.11.1.13-11.1.14) we essen-
tially get back the unmodified Coulomb and exchange interactions as if the
CI had been done with the regular Coulomb operator. What the dotted curve
in Fig. 11.2.4 represents is therefore the usual CI energy plus a correlation
only contribution. Since the short-range correlation energy is always below
or equal to zero the dotted curve has no minimum. Without a corresponding
exchange functional the SRLDA with local µ correlation functional is aban-
doned.

A more promising idea for improving on the SRLDA functional is the
extrapolation schemes mentioned in Sec. 9.4.2. At the time of writing this
thesis these schemes have not been implemented but something related has
been tested. As a first approximation to extending short-range VWN corre-
lation to short-range LYP correlation, it is assumed that the rescaling (Eq.
9.4.2) that was done on the regular VWN functional [28] can also be applied
to the LYP functional [8]. Letting A denote the denominator in Eq. 9.4.2
the short-range LYP correlation energy and potential become

ESR−LY P
c ≈ A · ELY P

c (11.2.19)

V SR−LY P
c ≈ A · V LY P

c + dA · ELY P
c (11.2.20)

The short-range LDA (Dirac) exchange was derived analytically and we
therefore do not similarly have scaling factors that can be transferred to
Becke exchange correction [40]. In stead the following is proposed

ESR−GGA
x ≈ A · (EDirac

x + EBecke
x ) (11.2.21)

where

A =
ESR−LDA

x

EDirac
x

(11.2.22)
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and the potential becomes

V SR−B
x ≈ B · (EDirac

x + EBecke
x ) + A · (V Dirac

x + V Becke
x ) (11.2.23)

where

B =
V SR−LDA

x

EDirac
x

− ESR−LDA
x · V Dirac

x

(EDirac
x )2

(11.2.24)

The correct limits of ESR−LDA
x ,

ESR−LDA
x →

{
EDirac

x for µ→ 0
0 for µ→∞ (11.2.25)

ensures the correct limits of ESR−B
x

ESR−B
x →

{
EDirac

x + EBecke
x for µ→ 0

0 for µ→∞ (11.2.26)

The total exchange correlation from this approximate scheme is the short-
range BLYP functional. In Fig. 11.2.2 this a functional has been used in

Figure 11.2.5: Ground state energy of Be in the truncated CI-DFT model,
using the cc-pVTZ basis, the erfgau two-electron operator, and an approx-
imate short-range BLYP functional.
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calculating the ground state energy of Beryllium in the truncated CI-DFT
model using a cc-pVTZ basis set. One should of course be careful drawing
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too many conclusions from using this approximate functional but the µ→∞
limit is correctly the usual CI energy and the µ = 0 limit is the usual BLYP
energy which is close to the experimental energy (-14.667 Hartree). The CI-
DFT now has a minimum which is much closer to the experimental energy
than with the SRLDA functional. More importantly, the optimal µ value for
the SRBLYP functional has been approximately decreased by 3 compared to
the SRLDA functional and this indicates that with a better functional for
small µ values the optimal µ is expected to be smaller. This is encouraging
and is indeed what is wanted since a small µ value allows a better hybrid of
WFT and DFT in which as much work as possible is done by the functional
part of the hybrid.



Chapter 12

Conclusions

The hybrid method that merges wave function theory with density functional
theory by means of short-range long-range separation of the Coulomb opera-
tor has been implemented in a development version of dalton. The hybrid
model has been implemented as the CI-DFT and MCSCF-DFT methods
using either the erf

V lr
ee =

erf(µr12)

r12

(12.0.1)

or the erfgau

V lr
ee =

erf(µr12)

r12

− 2µ√
π
e−

1
3
µ2r2

12 (12.0.2)

long-range two electron operators and using either the short-range LDA func-
tional or more approximate functionals that go beyond LDA. The algorithms
are completely general though and can easily be extended to using other
two-electron operators and short-range functionals. The conclusions from
the investigations can be summarized as :

1. In the systems tested the WFT DFT hybrid methods provide better
estimates of the ground-state energies than both the regular DFT and
WFT methods.

2. The tests indicate that both basis set requirements are lowered and
that the need for long wave function expansions in multi-reference ap-
proaches to dynamic correlation has been removed from the WFT DFT
hybrid by releasing the wave function from dealing with short-range in-
teraction of the electrons. This is promising for performing large scale
with the MCSCF-DFT model. An even more economical approach
could be the Generalized Valence Bond DFT hybrid model.
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3. Currently the limitations of using a short-range LDA type functional
mean that it is impossible to achieve a good description of both core
and valence electrons in many electron systems. Improving the func-
tionals in the region of small µ values by taking advantage of the better
quality of gradient corrected functionals looks very promising and could
remove this obstacle.
An alternative to improving the SRLDA functional in reduced space
CI-DFT and MCSCF-DFT calculations is to treat the inactive core
electrons by the regular B3LYP method in the Kohn-Sham spirit, and
only perform the short-range long-range separation in the valence space.
The motivation behind this procedure is that in this way the core elec-
trons are described at a better level than with the SRLDA functional
and the multi-configurational character is expected to mainly be asso-
ciated with the valence electrons. At the time of writing this thesis the
implementation of these ideas has begun but has not reached at state
that allows any results to be reported.

4. Short-range gradient corrected functionals will also benefit from the
short-range long-range separation. A well known problem with gradi-
ent corrected functionals is an incorrect asymptotic behavior. Assign-
ing only short-range interactions to the functional this is not expected
to be a serious problem for the WFT DFT hybrid in the region of
intermediate and large µ values.

5. With the formulation of an MCSCF-DFT hybrid it will be possible to
perform calculations on systems with multi-configurational characters.
Systems that historically have been problematic to treat with regular
DFT. Extending the method to allow calculations of frequency depen-
dent response properties will likewise offer improvements over time-
dependent DFT in cases with static correlation and in the description
of excited states with for example double excitation character.
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Chapter 13

Introduction

The work of Clementi et al. [1] was already mentioned in Sec.4 to show just
how small an energy contribution the correlation is. The decomposition of
energy contributions can be used once again to argue that the relativistic en-
ergy correction can likewise not be ignored if high accuracy is needed. From
Fig.4.0.1 it was clear that the exchange energy was a considerable energy
contribution that by far overshadowed the correlation energy. For atoms of
nuclear charge Z = 1..54 Clementi et al. found that the relativistic energy
correction becomes larger than the exchange energy for Z=50 while relativ-
ity becomes more important than correlation already at Z=12. In terms of
ground state energies one can therefore conclude that for all but the light-
est elements it becomes important to take relativistic effects into account
and when approaching Z=12 it should even be considered as important as
electron correlation. Of course in this part of the periodic table relativity
is essentially a core effect, unlike correlation which will also affect valence
properties.
That relativistic effects become increasingly important with increasing nu-
clear charge can be understand from the following simple arguments [2]. The
average speed of the 1s-electron in atomic units is equal to the nuclear charge
(〈v〉1s = Z). From special relativity we furthermore know that the mass of
on electron traveling at the speed v is related to its rest mass (me) by

m1s =
me√
1− v2

c2

=
me√
1− Z2

c2

(13.0.1)

where c ≈ 137, is the speed of light in atomic units. This factor (1/
√

1− Z2

c2
)

increases dramatically as Z approaches the speed of light as seen on Fig.13.0.1.
If the classical angular momentum

L = r× (mv) (13.0.2)
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Figure 13.0.1: Illustration of the relativistic mass correction as a function of
nuclear charge.
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is to be preserved an increase in the mass must be accompanied by a con-
traction of the 1s-orbital. This contraction will propagate and produce a
contraction of the outer s and p shells as well. The innermost d orbitals can
likewise experience a relativistic contraction while the increased shielding of
the nucleus due to these contractions will have the effect of an expansion of
the outer d and f orbitals. A classic example of relativistic orbital contrac-
tion/expansion is the gap of the 5d 6s orbitals of Au, where a non-relativistic
calculation would predict silver and gold to both absorb light in the ultra-
violet region, i.e. having the color of silver, while a relativistic calculation
decreases the 5d 6s gap of Au to predict an absorption in the 460nm region.
The “take home message” is that - the need to account for relativistic effect
in calculations of both energies and properties becomes important whenever
considering heavy elements and in general when calculating properties de-
pending on the electronic density near the nuclear region. This can be done
in several ways. A simple way of incorporating some relativistic effects within
an otherwise n.r. framework is replacing the core electrons by an effective
potential based an relativistic atomic calculation. Since the relativistic ef-
fects are expected to be most pronounced near the nucleus, the use of such
relativistic effective core potentials should account for a large fraction of
the relativistic effects. Alternatively one can account for relativity by us-
ing Hamiltonians based on 1- and 2-component approximations to the Dirac
equation [3–5], like the Douglas-Kroll [6, 7] and ZORA [8] Hamiltonians,
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but while the reduced computational effort of these approximate methods
is appealing, operators often become quite complicated. This in turn is the
advantage of the 4-component formulation, in which operators have a much
simpler structure. Though being better suited for describing relativity, meth-
ods formulated within the 4-component framework have only been applied
in the last two decades, the reason being the computational effort required.
Probably the most frequent argument from people being critical about the
future of 4-component calculations is that the methods are only applicable
to systems that are of no chemical interest. It is therefore important to prove
that well founded approximation can bring the computational efficiency close
to that of the n.r. approaches without jeopardizing the advantages of simple
formalism and accuracy.
Many attempts to reduce the computational cost of the 4-component meth-
ods have focused on ways to avoid calculating the additional classes of inte-
grals partially or entirely [9–13]. Complete neglect of integrals involving small
component functions is generally not an applicable approach since the small
component can be significantly occupied [14], but including the densities in
an integral screening techniques based on the Cauchy-Schwartz inequality
has proved to be an efficient way of neglecting integrals that contribute neg-
ligibly to the Fock matrix [11]. As will be seen in this chapter a large fraction
of the additional integrals present in 4-component Dirac-Hartree-Fock (DHF)
can be approximated or neglected which makes it possible to perform cal-
culations with the one-center 4-component model on molecules of the same
size as if the Douglass-Kroll or ZORA Hamiltonians are used.
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Dirac-Hartree-Fock Theory

The following section sets up the framework for doing 4-component Dirac-
Coulomb Hartree Fock calculation. The notation closely follows that of T.
Saue et al. [11]. We start from the relativistic one-electron Hamiltonian in
the presence of the static potential from the Born-Oppenheimer reference
frame of nuclei as proposed by P.A.M Dirac [3–5] in 1929

ĥD(i) = cα · p(i) + βmc2 + V N(i) (14.0.1)

where p = −i
[

∂
dx
, ∂

dy
, ∂

dz

]
is the momentum, α = (αx, αy, αz) and where the

components of α as well as β are 4× 4 matrices

αi =

(
02 σi

σi 02

)
, β =

(
I2 02

02 −I2

)
(14.0.2)

where 02 and I2 are the 2x2 null and unit matrices and σi are the Pauli
matrices. To align the relativistic energy scale with the n.r. we do however
not use β but β′ = β − I4. V

N(i) is the electrostatic potential on electron i
from the N nuclei,

V N(i) = −
N∑
A

ξA
riA

(14.0.3)

where ξA(riA) = ZANAexp(−ηAriA), and we model the distribution of the
nuclear charge ZA with a single Gaussian.

The Dirac Hamiltonian for a molecular system of n electrons is buildt by
a sum of the one-electron Hamiltonians (14.0.1) and adding terms describing
the electronic interactions (second term) as well as the repulsion between the
N nuclei

ĤD =
n∑

i=1

ĥD(i) +
n∑

i<j

ĝ(ij) +
N∑

A<B

ZAZB

RAB

(14.0.4)
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Though getting an electron interaction that is not Lorentz invariant we settle
for the usual n.r. Coulomb interaction ĝCoulomb(i, j) = 1

rij
. A better descrip-

tion is providing by the Breit interaction which is the sum of the Gaunt and
Gauge terms,

ĝBreit(i, j) = −
(

αi ·αj

2rij

+
(αi · rij) · (αj · rij)

2r3
ij

)
(14.0.5)

but the use of this operator would require the evaluation of a huge number of
integrals that are not expected to effect the properties of the valence region.
Our choice of molecular Hamiltonian is therefore the Dirac-Coulomb Hamil-
tonian

ĤDC =
n∑

i=1

ĥD(i) +
n∑

i<j

1

rij

+
N∑

A<B

ZAZB

RAB

(14.0.6)

In the DHF approach we approximate the wave function by a single Slater
determinant (Ψ = 1√

N !
| ψ1(1)ψ2(2) · · ·ψN(N) |) of orthonormal (〈ψi | ψj〉 =

δij) molecular spinors, and we write the electronic Dirac-Coulomb energy as

E =
n∑

i=1

〈ψi | ĥD | ψi〉+ 1

2

n∑
i,j=1

[(ψiψi | ψjψj)− (ψiψj | ψjψi)] (14.0.7)

with the two-electron integrals written in Mulliken notation.
The presence of the 4× 4 matrices in ĥDC (14.0.1) must make the Molecular
Orbitals (MO’s) 4-spinors, and we expand these in a set of real atomic scalar
functions (χX

i )

ψi =




ψLα
i

ψSα
i

ψ
Lβ

i

ψ
Sβ

i


 =




χ̃Lα 0 0 0
0 χ̃Sα 0 0
0 0 χ̃Lβ 0
0 0 0 χ̃Sβ







cLα
i

cSα
i

c
Lβ

i

c
Sβ

i


 = χ̃ci (14.0.8)

where

χ̃X =
[
χX

1 χ
X
2 · · ·χX

NX

]
, cX

i =




cX1i

cX2i
...

cXNX i


 , X = Lα, Lβ, Sα, Sβ (14.0.9)

The energy in (14.0.7) is now a function of the MO-coefficients and varia-
tional determination of the coefficients that minimize this energy, under the
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constraint that the MO’s remain orthonormal, yield the pseudo eigenvalue
equation (the Dirac-Fock equation)

Fc = εSc (14.0.10)

where S is the overlap matrix. F is the Fock matrix which can be split into
one- and two-electron contribution (F = F(1) + F(2))

F(1) =




VLαLα −icPLαSα
z 0 icP

LαSβ

−
−icPSαLα

z WSαSα −icPSαLβ

− 0

0 −icPLβSα

+ VLβLβ icP
LβSβ
z

−icPSβLα

+ 0 icP
SβLβ
z WSβSβ


 (14.0.11)

with the elements

VXX
ij = 〈χX

i | V N | χX
j 〉 (14.0.12)

WY Y
ij = 〈χY

i | V N − 2c2 | χY
j 〉 (14.0.13)

ic(P±)XY
ij = c〈χX

i |
∂

∂x
| χY

j 〉 ± ic〈χX
i |

∂

∂y
| χY

j 〉 (14.0.14)

ic(Pz)
XY
ij = c〈χX

i |
∂

∂z
| χY

j 〉 (14.0.15)

where X, Y ∈ {Lα, Lβ, Sα, Sβ} (14.0.16)

F(2) = FJ + FK (14.0.17)

FJ =




JLα 0 0 0
0 JLβ 0 0
0 0 JSα 0
0 0 0 JSβ


 (14.0.18)

FK =




−KLαLα −KLαSα −KLαLβ −KLαSβ

−KSαLα −KSαSα −KSαLβ −KSαSβ

−KLβLα −KLβSα −KLβLβ −KLβSβ

−KSβLα −KSβSα −KSβLβ −KSβSβ


 (14.0.19)

with elements

JX
ij =

∑
Y

∑

kl

DY Y
kl (χX

i χ
X
j | χY

k χ
Y
l ) (14.0.20)

KXY
ij =

∑

kl

DXY
kl (χX

i χ
X
l | χY

k χ
Y
j ) (14.0.21)

where X,Y ∈ {Lα, Lβ, Sα, Sβ}
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where the density matrix D has been introduced.

DXY
kl =

n∑
i

cXkic
Y ∗
li (14.0.22)

Introducing time reversal symmetry as a way to reduce the work need to
solve the eigenvalue problem (14.0.10) quaternion algebra is introduced [11].
The one- and two-electron Fock matrices have the structure

[
Fαα Fαβ

F βα F ββ

]
=

[
A B
−B∗ A∗

]
(14.0.23)

which allows a unitary quaternion transformation (̌i, ǰ, ǩ being the quaternion
units)

U =
1√
2

[
I ǰI
ǰI I

]
(14.0.24)

to block diagonalize the Fock matrix

F
′
= U†FU =

[
Fαα + Fαβ ǰ 0

0 −ǩ(Fαα + Fαβ ǰ)ǩ

]
(14.0.25)

This defines the quaternion Fock matrix (QF) and produces the quaternion
Dirac-Fock pseudo eigenvalue equation which is solved iteratively

QFQc =
[
Fαα + Fαβ ǰ

] [
cα − cβ∗ǰ

]
= εQS

[
cα − cβ∗ǰ

]
= εQSQc

(14.0.26)

14.1 Kinetic Balance - Choice Of Small Com-

ponent Basis

Having seen that the wave function has a large and a small component we
can write the one-electron Dirac-equation, corresponding to the Hamiltonian
of (14.0.1), as two coupled equations

(V N − E)ΨL + c(σ · p)ΨS = 0 (14.1.27)

c(σ · p)ΨL + (V N − E − 2mc2)ΨS = 0 (14.1.28)

From (14.1.28) we identify a coupling of the small and large component.
Isolation of ΨS yields

ΨS =
1

2mc
B(E)(σ · p)ΨL ; B(E) =

[
1 +

E − V N

2mc2

]−1

(14.1.29)
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and in the n.r. limit we get

lim
c→∞

ΨS =
1

2mc
(σ · p)ΨL (14.1.30)

For a hydrogenic large component wave function (Ψ ∼ e−Zr) this puts mean-
ing to the names “large” and “small” components

ΨS ∼ Z

2mc
ΨL ∼ Z

274
ΨL (14.1.31)

Choosing your small component part of the wave function as prescribed in
(14.1.30) you get the right n.r. limit when the velocity operator works on the
wave function (if we identify ΨL as the n.r. wave function, and p = mv).

lim
c→∞

Ψ†cαΨ =
(
ΨL†ΨS†)

(
cσΨS

cσΨL

)

=
1

2m
ΨL† [σ(σ · p) + (σ · p)σ] ΨL

=
1

m
ΨL†pΨL (14.1.32)

Hence the kinetic energy has the right n.r. limit and (14.1.30) forms the basis
for the kinetic balance condition. [15,16]
To expand the MO’s in scalar basis functions we must impose a coupling of
the small- and large component basis similar to that of (14.1.30). We relate
the set of small component basis functions to that of the large component by

{
χS

}
=

{
(σ · p)χL

}
(14.1.33)

Defining the Gaussian of exponent α and angular momentum l = i + j + k
as Gα

ijk = Gα
i G

α
jG

α
k where for example Gα

i = xie−αx2
, and expanding the

MO’s in these functions we get Gaussians of angular momentum lowered and
incremented by one in the set of small component functions.

χL = {Gα
l } ⇒ χS =

{
Gα

l−1, G
α
l+1

}
(14.1.34)

The linear combination generated by differentiation of the large component
function can be regarded as separate functions producing the unrestricted
kinetic balance (UKB) scheme, in which there is approximately a factor of two
between the number of large and small functions, or the linear combination
can be regarded as a single Gaussian giving the restricted kinetic balance
(RKB) scheme, in which there is a 1:1 ratio between the large and small
functions.
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The default procedure in dirac [17] is to use the restricted kinetic balance
scheme, ensured by projecting out the “unphysical” solutions present in the
free particle positronic spectrum. This projection ensures a 1:1 ratio between
electronic and positronic orbitals.
Note that using the scheme described above one can use the usual non-
relativistic basis sets where available for the large component. Of course some
of the heavier elements are not included in these basis sets and relativistic
Gaussian basis sets have been reported [18,19].

14.2 Integral Logistics

Using the Coulomb operator we need to calculate three classes of integrals :
(i) LL integrals : X=Y=L in (14.0.20-14.0.21)
(ii) LS integrals : X=L,Y=S in (14.0.20-14.0.21)
(iii) SS integrals : X=Y=S in (14.0.20-14.0.21)

The integrals of class (i) are also calculated in the n.r. case. Taking the
8-fold index permutation symmetry

(ij | kl) = (ij | lk) = (ji | kl) = (ji | lk) =

(kl | ij) = (kl | ji) = (lk | ij) = (lk | ji)

into account the classes (ii) and (iii) scale as 1
4
N2

SN
2
L and 1

8
N4

S respectively,
where the number of small component basis functions (NS) is approximately
twice the number of large functions (NL). This produces about 25 times as
many two-electron integrals as in the n.r. case which underlines the need
to use a direct integral evaluation scheme and the usefulness of effective
screening techniques as well as the possibility to only include the classes (ii)
and (iii) after a certain number of iterations in the SCF procedure. The
aim of the one-center approximation is to reduce this large factor between
the number of two-electron integrals in the HF and DHF schemes without
significant errors in the energy and wave function.



Chapter 15

One-center approximations

Despite the fact that the two-electron integrals involving the small compo-
nent are numerous their contribution to the Fock matrix is often vanishing.
Approximations to the evaluation of the relativistic two-electron integrals
should involve the small component.

If we insert (14.1.29) in (14.1.27) get

[
(V N − E) +

1

2m
(σ · p)B(E)(σ · p)

]
ΨL = 0 (15.0.1)

For | V N − E |< 2mc2 we can expand B(E) in powers of 1
2mc2

B(E) ≈ 1− (E − V N)

2mc2
− (E − V N)2

2mc4
− · · · (15.0.2)

After insertion of this expansion in (15.0.1), renormalization of ΨL and re-
ordering, one can identify the Pauli Hamiltonian. Assuming a point nuclear
potential it takes the form

ĥPauli = T + V N − 1

8m3c2
p4 +

πZ

2m2c2
δ(r) +

Z

2m2c2
s · `
r3

(15.0.3)

The three last terms can be considered corrections to the non-relativistic
kinetic and potential energy (T + V N). The second and third terms are
the mass-velocity and Darwin terms, collectively often called the scaler rel-
ativistic corrections. The third term is the spin-orbit correction, describing
the interaction of the electron spin with the magnetic field generated by the
movement of the electron. It depends on r to the third power and is there-
fore a very “local” property1. This locality has been utilized by B.A. Heß et.

1The two-electron spin-orbit interaction of the Breit-Pauli Hamiltonian has the same
r-dependence
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al [20], C. Marian et. al [21] and B. Schimmelpfennig et. al [22] to test the
use of effective one-electron spin-orbit operators, neglecting all multi-center
two- and one-electron contributions. Using the Atomic-Mean-Field-Integral
code (AMFI, available in dalton [23]) for evaluation of the one-center spin-
orbit integrals while taking advantage of the high atomic symmetry, they
have proved this to be an effective way of getting spin-orbit splittings in
good agreement with experiment.

The success of the mean-field spin-orbit approach lets us expect that a
way to reduce the computational effort of the 4-component approaches with-
out jeopardizing the accuracy, must also be hidden somewhere within the
4-component framework. In 4-component theory the spin-orbit interaction
is described through the LS class of integrals and applying the thinking of
the mean-field approach we expect to be able to make good approximations
not only to the SS, but also the LS class of integrals. Again it has to be
stressed that simply neglecting the SS and LS integrals or even just neglect-
ing the multi-center terms will not produce a good approximation. When the
small component is significantly occupied this would mean that a consider-
able amount of electronic repulsion would be neglected and the electrostatics
of the system would therefore be wrong. To make a comparison the Douglas-
Kroll approximation does not have the LS and SS classes of integrals either
but in this case the effect of the small component has been folded into the
large component wave function by the Douglas-Kroll transformation. For this
reason a 4-component calculation without the LS and SS integrals would per-
form worse than the Douglas-Kroll approach.

The key to reducing the computational effort associated with integral
evaluation of 4-component methods is found in the highly localized nature of
the small component density. This locality is nicely illustrated on Fig.15.0.1
where the large and small component density has been calculated using
dirac and plotted in the Molekel2 program. While the large component
density extends to the entire molecule the small component density is local-
ized on the atoms with negligible overlap between centers. One can say that :
The superposition of atomic small component densities is a good approxima-
tion to the molecular small component density and as molecular formation
does not distort the small component densities much we expect that interac-
tions between small component charge centered on different atoms are either
negligible or well approximated by simple Coulombic repulsion.

2http://www.cscs.ch/molekel/
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Figure 15.0.1: Large and small component densities of Iodobenzene.
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15.1 Notations and Integral Approximations.

The one-center models presented in the next section will all build on the
approximations listed below. The notation used is somewhat “sloppy” but
allows a simple definition of the models.

1. SA is a batch of small component scalar functions centered on atom A.
Likewise for LA.

2. (SASB | SCSD) is the part of (14.0.20) where χX
i is centered on atom

A and X = S etc. For simplicity we skip the reference to spin.

3. V ee
SASB

is the contribution to the two-electron Fock matrix from all such
elements in 2.

V ee
SASB

∼
∑
C,D

DSCSD
(SASB | SCSD)

Giving the SS contributions to the electronic repulsion energy

Eee
SS = 1

2

∑
A,B

DSASB
V ee

SASB

4. In this notation the SS contribution to the two electron Fock matrix
can be split in multi-center (first line) and one-center terms (second
line).

V ee
SASB

∼
∑
C,D

DSCSD
(SASB | SCSD)(1− δAB)(1− δCD) (15.1.4)

+
∑

A6=B

DSBSB
(SASA | SBSB) +

∑
A

DSASA
(SASA | SASA)

(15.1.5)

5. In the one-center terms a further approximation can be made by re-
placing the contraction of the density with the with small component
functions centered on the same atom by an effective charge.

∑

A 6=B

DSBSB
(SASA | SBSB) ≈ (SA | q

S
B

r1B

| SA) (15.1.6)

6. In the case where A=B (last term in Eq. 15.1.5) these terms can even be
approximated calculating the repulsion energy from this term directly
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and adding it to the total electronic energy instead of adding this term
to the Fock matrix

1
2

∑
A

DSASA
(SA | q

S
B

r1B

| SA) ≈ 1
2

∑

A6=B

qS
Aq

S
B

RAB

(15.1.7)

Furthermore charges and inter atomic distances are labeled as on figure
15.1.2.

B

Z  ,q   ,q
B B

S
B
L

A

Z  ,q   ,q
A A

S
A
L

RAB

Figure 15.1.2: Notations used in the one-center approximations.

The discussion of how to obtain good estimates of the small component
charges (qS) is left for Sec. 15.6.

The following sections discuss some previously implemented models aswell
as the models presented here. Appendix D.2 lists all currently implemented
models in dirac.

15.2 Model I

The first model presented is the work of L. Visscher and T. de Jong [12,
13]. L. Visscher tested the effect of neglecting the entire SS-class of two-
electron integrals and found that this is generally not a useful approach.
While the one-center contributions to V ee

SS are the most dominant they remain
essentially the same in the molecule as in the atom and therefore do not
influence the shape of the molecular potential energy surface. He therefore
found that the addition of a simple distance dependent Coulombic repulsion
correction to each point of the energy surface

1

2

∑

A 6=B

qs
Aq

s
B

RAB

(15.2.8)

approximated the multi-center contributions well and gave reliable bond dis-
tances and harmonic frequencies for the three heaviest halogen dimers while
producing a speed-up factor of 3.
Visscher and de Jong [13] extended these ideas to get a reduction in the num-
ber of LS-class integrals as well. Again the method relies on the fact that
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contributions to the potential energy from integrals over small component
functions centered on different atoms are negligible. In contrast to the previ-
ously mentioned method the one-center SS-integrals are evaluated explicitly
to improve the screening of the nuclei and thereby provide a more accurate
wave function. The integral approximation in our notation is

V ee
SASB

∼
∑
C,D

DSCSD
(SASB | SCSD)δABδCD

∼
∑

C

DSCSC
(SASA | SCSC) (15.2.9)

V ee
LASB

∼
∑
C,D

DSCSD
(LALB | SCSD)δCD

∼
∑

C

DSCSC
(LALB | SCSC) (15.2.10)

For consistency the corresponding multi-center nuclear-attraction integrals
are neglected as well.

V ne
SASB

∼
∑
A,B

(SA | −
∑

J

ZJ

rJ

| SB)δAB

∼
∑

A

(SA | −
∑

J

ZJ

rJ

| SA) (15.2.11)

The success of this approach shows that the terms neglected in (15.2.9-
15.2.10) approximately cancel with the terms neglected in (15.2.11) since
(ZJ − qL − qS) ≈ 0. This will be seen to be the main approximation in all
the one-center models presented here (see Sec. 15.5).
Equation (15.2.9) can be further reduced to just include one-center terms by
using the approximation in Eq. 15.1.7 to produce the following SS energy
contribution.

Eee
SS ∼ 1

2

∑
A

DSASA
DSASA

(SASA | SASA) + 1
2

∑

A6=B

qs
Aq

s
B

RAB

(15.2.12)

Comparing to section 14.2 (page 98) the scaling is now reduced to being lin-
ear for the SS-class and cubic in the LS-class. Significant savings has hereby
been achieved.
The errors introduced in the Coulomb repulsion are expected to be small,
following the simple argument that for tight functions the overlap is insignif-
icant and for diffuse functions having a considerable overlap, the contraction
with a small density matrix element should give a vanishing contributions to
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the Fock matrix. Approximations are also introduced in the exchange terms
(14.0.21). The same arguments used for the Coulomb terms apply here. The
largest contributions are expected from the KLL block which we evaluate
explicitly as in non-relativistic theory.
The model will be used in applications in this report for comparison with
models II and III.

15.3 Model II

Assuming that the previous level of approximations (15.2.9-15.2.11) is a good
one, we present here a way to take this approach even further. To make the
DHF approach truly one-center in all integrals involving the small component
we propose the following approximations.

V ee
SASB

∼
∑
C,D

DSCSD
(SASB | SCSD)δABδCDδAC

∼
∑

A

DSASA
(SASA | SASA) (15.3.13)

V ee
LASB

∼
∑
C,D

DSCSD
(LALB | SCSD)δABδCDδAC

∼
∑

A

DSASA
(LALA | SASA) (15.3.14)

As before we make the corresponding approximations in the nuclear-attraction
terms for consistency.

V ne
SASB

∼ (SA | −
∑

J

ZJ

rJ

| SB)δABδAJ ∼
∑

A

(SA | −ZA

rA

| SA)

(15.3.15)

Assuming cancellation of the terms neglected this is clearly unsatisfactory
in this case. This would mean neglecting integrals involving the large com-
ponent which we can of course not trust to be as localized as the small
component. Instead we compare the approximation (15.2.9-15.2.11) with
(15.3.13-15.3.15) and identify what kind of interactions are additionally ne-
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glected.

V ee
SASB

:
∑

A6=B

DSBSB
(SASA | SBSB) (15.3.16)

(Going from (15.2.9) to (15.3.13))

V ee
LASB

:
∑

A6=B

DSASA
(LBLB | SASA) +

∑

A6=B

DSASA
(LALB | SASA)

(15.3.17)

(Going from (15.2.10) to (15.3.14))

V ne
SASB

:
∑

A6=B

(SA | − ZB

RAB

| SA) (15.3.18)

(Going from (15.2.11) to (15.3.15))

Eq. 15.3.17 can be approximated by invoking the approximation in Eq.
15.1.6. Eq. 15.3.16 and 15.3.18 will not be added to the Fock matrix but
approximated as energy corrections after applying the approximation in Eq.
15.1.7.
We therefore replace (15.3.16-15.3.18) by

Eee
SS :

∑

A6=B

qS
Aq

S
B

RAB

(15.3.19)

V ee
LASB

:
∑

A6=B

(LB | q
S
A

rA

| LB) +
∑

A6=B

(LA | q
S
A

rA

| LB) (15.3.20)

Ene
SS :

∑

A6=B

−ZBq
S
A

RAB

(15.3.21)

The terms in (15.3.19) and (15.3.21) combine with the regular nuclear repul-
sion terms as modifications to nuclear charge.

Enn →
∑

A 6=B

(ZA − qS
A)(ZB − qS

B)

RAB

(15.3.22)

Likewise (15.3.20) combine with the large component contribution to the
nuclear electron attraction terms.

V ne
LALB

→
∑

A

(LA | −ZA

rA

−
∑

J 6=A

ZJ − qS
J

rJ

| LA)

+
∑

A6=B

(LA | −
∑

J

ZJ − qS
J

rJ

| LB) (15.3.23)
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In this way the locality of the small component charge as been exploited to
produce a method where all multi center contributions to electron repulsion
integrals involving the small component are estimated with no additional
computational cost. The method simply amounts to modifying the nuclear
charges in the appropriate nuclear-attraction and nuclear repulsion terms.

It should be noted that in (15.3.17) we only consider contributions to the
JL-part of the two-electron Fock matrix (14.0.18). We do of course neglect
the contributions to JS as well and following the same procedure this would
give rise to corrections of the type

(SA | q
L
A

rA

| SB) and (SA | q
L
B

rB

| SA)

As we make the correction through the nuclear attraction integrals we get
the right “amount” of repulsion by adding the correction to the one-electron
Fock matrix once since this is not multiplied by one half when calculating
the total energy3.

The scaling of this model has been reduced to being linear in the evalua-
tion of LS- and SS-integrals since only the atomic contributions are evaluated.
In AO-basis one-center two-electron integrals are unchanged during the wave
function optimization and we can therefore benefit from writing these to disk
at the start of the calculation. What has hereby been achieved is a DHF ap-
proach that only differs from a non-relativistic HF procedure, following a
direct integral evaluation scheme, in the initial evaluation of one-center LS-
and SS-integrals and the fetching of these from disk in each iteration. For
molecules with many identical atoms, it is only necessary to calculate the
one-center integrals for each atom type, since these are identical assuming
that one is using the same basis set for each atom type. In large organic
molecules the saving will be significant if you only have to evaluate the one-
center LS and SS integrals for one carbon atom, one hydrogen atom, one
oxygen atom etc. In the current implementation this is not utilized.

In the implementation of the one-center approximation described above,
all corrections are made by adding constant numbers4 to the nuclear charges
in energy terms that all ready need to be calculated. Besides not increasing
the computational effort, this allows us to use this approximate wave function
for calculating properties without having to implement new integral types.
For example the molecular gradient is calculated straightforward, and is ac-
tually done at the cost of a non-relativistic molecular gradient. The reason

3Calculating the total DHF energy as E =
∑

ij Dij(F
(1)
ij + 1

2F
(2)
ij )

4Assuming that we use fixed small component charges (qS). Other choices will be tested
(see section 15.6)
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is that since all multi-center two-electron integrals are estimated with mod-
ified nuclear-electron and nuclear-nuclear repulsion terms the contribution
to molecular gradient from these terms are automatically included, and we
are left with the one-center LS- and SS-integrals, which of course are geom-
etry independent. This leaves us with only having to evaluate the geometry
derivatives of the LL type two-electron integrals, just as in a non-relativistic
calculation.

15.4 Model III

What model II does is to approximate a part of the two-electron Fock ma-
trix by corrections to the one-electron Fock matrix. Though we expect to
account for the right amount of electronic repulsion this way, and thereby
get a reasonable total electronic energy, the wave function might be expected
to suffer since terms from the LL and SS two-electron Fock matrix are added
to the one-electron LL part. We therefore want to test the performance of
an approximation where all multi-center contributions from both (LL | SS),
(SS | LL) and (SS | SS) integrals are calculated as two-index integrals. The
approximation is written as,

V ee
SASB

∼
∑

A

DSASA
(SASA | SASA) +

∑

A6=B

(SA | q
S
B

rB

| SA) +

∑

A6=B

(SA | q
S
A

rA

| SB) +
∑

A6=B 6=C

(SA | q
S
C

rC

| SB) (15.4.24)

V ee
XAYB

∼
∑

A

DYAYA
(XAXA | YAYA) +

∑

A 6=B

(XA | q
Y
B

rB

| XA) +

∑

A6=B

(XA | q
Y
A

rA

| XB) +
∑

A6=B 6=C

(XA | q
Y
C

rC

| XB) (15.4.25)

calculating the contributions to V ee
SS, V ee

LS (X=L,Y=S) and V ee
SL (X=S,Y=L)

separately and adding them to the appropriate blocks of the two-electron
Fock matrix and not the one-electron Fock matrix as in model II. The only
contributions not accounted for this way is from integrals over four functions
centered on four different atoms. The error from these integrals is expected
to be small. The errors associated with the approximation in (15.4.25) are
clearly expected to be largest for the V ee

SL contribution to the Fock matrix.
This model introduces no approximation in the V ne-potential but reduces

the evaluation of two-electron integrals involving the small component to the
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one-center cases as in model II. Thus the scaling and computational effort of
this model is approximately as in model II.

15.5 The Errors Of The One-Center Approx-

imations

The errors introduced by Model I and Model II to the Fock matrix can be
estimated by the terms (A 6= B),

∑

J 6=A,B

(
SA | q

S
J + qL

J − ZJ

rJ

| SB

)
(15.5.26)

It is clear that in the ’neutral atoms in molecules’ picture these contribu-
tions should be small (qL

J + qS
J ≈ −ZJ). In the general case, as for example a

charged molecule, one must remember that the integrals in (15.5.26) will be
multiplied with the DSS

AC density matrix elements, giving a negligible energy
contribution. However the integrals themselves can become large for diffuse
basis functions, meaning that the contribution to the SS-block of the Fock
matrix will not be negligible. This can lead to large errors in the positronic
eigenvalue spectrum and can cause instabilities in the iterative Hartree-Fock
procedure. This was also reported by de Jong and Visscher [13] who pro-
posed a scheme to address these issues. Instead of discarding multi-center
integrals these are expanded in one-center integrals. The scheme can there-
fore be described as projecting the multi-center terms onto the available set
of one-center integrals. As that increases the complexity of especially the
calculation of molecular gradients, we test the effect of simply projecting
out the set of positronic solutions present in the external potential. Besides
removing the instability of the iterative procedure we also reduce the dimen-
sion of the eigenvalue problem which further adds to the speed-up of the
approximation. With this scheme a direct parallel can again be drawn to the
Douglas-Kroll [6, 7] approach since the positronic solutions have been pro-
jected out and the small component is handled approximately (apart from
the one-center parts).
The effects on energies and properties of projecting out the positronic solu-
tions will be investigated.

Other concerns could be the errors introduced by neglecting the multi-
center contributions to the non-classical exchange interaction and the most
dominant non-scalar relativistic correction - the spin-orbit interaction. As
argued by de Jong and Visscher [13] the delocalized nature of the exchange



110 Chapter 15 One-center approximations

contributions should insure that the approximations made to these terms are
of little importance. Concerning the spin-orbit contributions, it has already
been mentioned that this is a very local interaction, and the major part of the
spin-orbit contribution is therefore described through the explicitly evaluated
one-center LLSS integrals.

15.6 Implementation

Model I was implemented in dirac [17] by Visscher and de Jong [13]. In this
work Model II and Model III have been implemented. All the corrections in-
volve the integral code of dirac, and some effort has gone into implementing
the models without interfering with the original integral routines. Therefore
new routines were coded to calculate the corrections needed and adding them
to the Fock matrix before solving the DHF eigenvalue problem. This also
allows for easier updating and development of the models.

15.6.1 Which qS to Use

Models I,II and III leave us with the freedom of choosing how to obtain
the small component charges, qS. One possibility is to perform accurate
atomic calculations. and tabulate the small component charges for use with
the one-center approximations. The advantage of using such charges is that
they can be tabulated reused in each one-center calculation. Furthermore
the tabulated charges are of course constant numbers and the one-center
corrections will therefore be geometry independent.
However what we wish to approximate with the corrections at a given basis
set level is the multi center contributions at that particular level. A better
choice of small component charges should therefore reflect the quality of wave
function, and as will be seen in section 15.9 we generally get better result
when using the density based charges obtained from a Mulliken population
analysis [24, 25]. For this purpose we interfaced a module written by O.
Fossgaard and T. Saue for generating the Mulliken charges from the density
in each DHF iteration. This scheme is expected to provide better energies,
but being density based these charges are strictly not geometry independent.
This is discussed in Sec. 15.7.

15.6.2 Which qL to Use

Concerning the large component charges needed for model III we did try
to use the ones obtained from a Mulliken analysis but found the need for
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refinements. What the Mulliken population analysis does is to assign total
charges to the atoms by splitting the off-diagonal elements of the matrix
of charges in equal amounts between the atoms in question. Taking the
diatomic molecule (A − B) as an example we get contributions to the total
charge from off-diagonal elements of the density and overlap matrix

A B
A qAA qAB

B qBA qBB

and QMulliken
A = qAA + qAB. In the case where the charge of A and B differ

significantly (for example like in HI) you get a misleading description of the
charge distribution which will result in a misleading description of the repul-
sion approximated in model III. This problem is expected to be insignificant
for the terms in (15.4.25) where qS is used but certainly not when qL is used.
Instead we calculate all elements of the matrix and thereby have the possi-
bility of distributing the off-diagonal elements on bonds and points between
nuclei. Two choices of distributions have been implemented and are tested
here. The first is to place all off-diagonal elements at the midpoint between
the two atoms in questions. The second is to take into account how much
each of the atoms contribute to the off-diagonal element qAB. This is done by
evaluating each component (x,y,z) of the matrix of dipole moment integrals.

A B
A µx

AA µx
AB

B µx
BA µx

BB

where µx
AB =

∑
kl D

LL
kl 〈χA

k | x | χB
l 〉. µAB provides an estimate of the center

of the density on the bond between atom A and B, and placing the corre-
sponding elements of the charge-matrix at these coordinates should produce
a better distribution of qL.
For both types of distribution we perform a test on the absolute value of the
charge and skip this element if below a specified value.

15.7 Molecular Gradients

By writing the one-center LS- and SS-integrals to disk, they are reused in all
steps in a geometry optimization and are therefore only calculated once in
the entire optimization.

Currently molecular gradients are only available for models I and II. When
using Mulliken small component charges in model II you have a dependence
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on the density in the charges meaning that the charges are strictly not geom-

etry independent (
dqS

A

dXA
6= 0). This contribution to the molecular gradient is

neglected in the current implementation and expected to be small following
the argument that the small component density is to a good approximation
unaffected by molecular formation and therefore fairly geometry indepen-
dent. This is not the case for the density based large component charges
used in model III which is the reason that the molecular gradient has not
yet been implemented for this model. The performance of the model did not
make this worthwhile.
In Sec 15.9.1 it is tested how the large and small component charges change
during a geometry optimization and the numerical molecular gradient is cal-
culated and compared to the approximate analytical gradient.

15.8 Extension to correlated wave functions.

Having formulated an efficient 4 component DHF model the next natural
step is to extend the model to correlated methods. The extension to DFT
is straightforward and requires no further considerations. Calculations with
the one-center B3LYP model are presented for Iodobenzene.

Extending the one-center model to methods that rely on MO transforma-
tions like the MP2, CC, and MCSCF method requires some considerations.
A simple approximation would be to assume that the contribution from the
multi-center LS and SS integrals can be neglected in the MO transformation
and describe these terms effectively by adding the approximate terms (Eq.
15.3.19-15.3.21) to the inactive Fock matrices. The performance of such a
one-center 4-component MCSCF scheme will be left for future testing.

15.9 Testing the Models for Hartree-Fock.

15.9.1 Iodobenzene

I. Comparison of Model I and Model II
C6H5I is the molecule we investigated most intensively with the one-center
models. It is a nice test case since the many centers and the presence
of a “heavy”-atom should make the approximations perform well with re-
spect to timings. Using an uncontracted n.r. cc-pVDZ [26] basis on Car-
bon and Hydrogen and an uncontracted Molfdir cc-pVDZ basis set on I
(L-[17s13p7d]) [27] results are presented i table 15.9.1 using Model I and
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Model II (only using Mulliken charges). The large computational effort asso-
ciated with the full integrals evaluation scheme is evident. The time factors
reported in the table are from the initial iteration where screening of the LS
and SS integrals is not yet efficient. In the final iteration the time factors
for the full DHF calculation are : NLS = 10.3;NSS = 1.9, as a proof that
when the wave function is nearly converged screening is extremely effective
on especially the SS integrals. During the optimization the time factors are
closer to the those of the initial iteration and therefore the one-center models
are still very useful in these iterations.

The large effort associated with evaluating LS and SS integrals is removed
by the one-center approximations. Model II reduces the time factor for the
LS-integrals to 0.33 and the time factor of the SS-integrals to 0.65, mean-
ing the the LS and SS integrals in total only takes as much time as the LL
integrals. In comparison, in model I, the LS and SS integrals takes about
10 times the time needed for the LL integrals. Projecting out the positronic
solution does of course not affect the integral evaluation timings. It must be
remembered though that the LS and SS-integrals have only been done ’on-
the-fly’ for the sake of comparing the timings. The additional advantage of
model II is that the LS and SS-integrals can be written to disk and used con-
ventionally throughout the optimization. Furthermore it is not utilized that
the we only need to calculate the one-center integrals once of each atom type.

In spite of the huge savings associated with Model II the accuracy in-
deed seems to be preserved. The ground state energy using Model II is very
close to the energy of Model I, which in turn is in agreement with the en-
ergy when using the full set of integrals to within 10−4 au. When using a
no-pair approximation (projecting out all positronic solutions) the difference
in energy of both Model I and Model II is increased to 10−3 au. but in nice
agreement with the energy when using the no-pair approximation with the
full set of integrals. The same arguments applies to both the norm of the
molecular gradient and the dipole moment and when relaxing the geometry
the Iodine carbon bond length predicted by the approximate one center mod-
els is in agreement with the full DHF calculation to within 10−4Å. All in all
the accuracy of Model II seems to be comparable to Model I, which is very
promising considering the huge savings in the integral evaluation of Model
II compared to Model I.

The 4-component B3LYP [28] result presented further adds to the advan-
tages of Model II. The time used for the integral evaluation of the B3LYP
and the B3LYP + one-center approximation is of course the same as for the
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corresponding DHF models. The numerical integration of the exchange cor-
relation potential will likewise be the same for the full 4-component B3LYP
model and the B3LYP + Model II combination. To get a idea of the sav-
ings associated with B3LYP + Model II the total time needed for the first
iteration of the B3LYP calculation was 1 hour and 6 minutes with the corre-
sponding time for the B3LYP + Model II combination was 27 minutes. Still
the accuracy of the Model II combination with B3LYP is of the same order
as for Model II in combination with DHF (10−4).

II. The importance of using Mulliken charges and comparing to
Model III
To illustrate why Mulliken charges are favored and to make a comparison
between all three one-center models another Iodobenzene calculation is pre-
sented in table 15.9.1. These calculations have been done in a far inferior

Table 15.9.2: Dirac-Coulomb SCF calculations on Iodobenzene using Model
I,II and III. Non relativistic uncontracted cc-pVDZ basis set on C,H. Home
made well-tempered basis set on I.

Model Energy (au)
All integrals -7216.901768

Model I -7216.901405
Model IIa -7216.896270
Model IIb -7216.901336
Model IIIc -7216.917207
Model IIId -7216.899428
Model IIIe -7216.902937

aUsing the tabulated small component charge on I (0.1895).
bUsing atom centered Mulliken small component charge on I (0.1758).
cUsing atom centered Mulliken small component charge on I (0.1758).
dUsing Mulliken small component charge on I (0.1758) centered on atoms and midpoints

between nuclei.
eUsing Mulliken small component charge on I (0.1758) centered on atoms and points

between nuclei determined by dipole moment.

basis set than those presented in table 15.9.1 but that does not affect the
conclusions that can be drawn by comparing the one-center models to each
other. It is clear why we favor the use of Mulliken small component charges
for model II. The energy is far better than when using tabulated charges. It
is easy to understand why. For the approximation in Eq. 15.1.6 and 15.1.7
to be as good as possible the small component charges qS must reflect the
quality of the basis set. The Mulliken charges do just that while the tabu-



116 Chapter 15 One-center approximations

lated charges are only a good approximation when we are close to the basis
set limit.

The performance of model III is not as impressive as that of model II.
The model where the charges have been distributed at points determined
by the dipole moment give the best agreement. For the calculations with
model III, we have used a single Gaussian to model the distribution of the
charges in the “correction”-integrals (15.4.24-15.4.25) in stead of just being
point charges. This only had cosmetic effects on the energy (the numbers
when using point charges agree with the ones presented in the table to the
sixth digit). As mentioned the error associated with model III is expected to
mainly stem from the simple way the large component charges is distributed.

The motivation for proposing model III was to make a model that gave a
more correct wave function since we do not fold part of the two-electron Fock
matrix into the one-electron Fock matrix as in model I and II. In table 15.9.3
we investigate how much the convergence of the wave function is disturbed
when switching off the integral approximation after convergence of the elec-
tronic gradient to a value specified by the keyword .SV1CNV (see section D.1)
The leap in the value of electronic gradient after the first iteration shown for

Table 15.9.3: The effect of switching the integral approximations off after
convergence of the one-center models. The one-center model is switched
off after the first iteration shown for each model. Numbers are from the
iodobenzene calculation.

Energy ERGVAL FCKVAL EVCVAL

Model I
-7.2169014052E+03 9.73E-08 -5.44E-04 1.08E-04
-7.2169017969E+03 3.92E-04 7.99E+01 1.50E+00
-7.2169017679E+03 -2.91E-05 4.68E-05 2.15E-04

Model II
-7.2169013659E+03 4.30E-08 5.02E-03 5.11E-05
-7.2169017544E+03 3.89E-04 5.63E+01 1.53E+00
-7.2169017677E+03 1.33E-05 -3.27E-03 1.78E-03

Model III
-7.2169172081E+03 -7.35E-08 1.78E-03 2.05E-05
-7.2169017310E+03 -1.55E-02 5.03E+01 4.76E-01
-7.2169017678E+03 3.68E-05 -1.14E-03 9.38E-04

each model is seen to be slightly smaller for model I than II. Model I seems
to recover a bit faster as well. The electronic gradient of model III is not
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as affected by switching off the approximation as model II even though the
change in energy is bigger. Taking the electronic gradient as a measure of
how much the approximate wave function differ from the full DHF one, we
see that the desired effect is present in model III though not as big as hoped.
It should be noted that the change in electronic gradient observed here is
comparable to that seen when performing a conventional DHF calculation
but switching the SS-integrals on when convergence to a specified threshold
has been reached.

III. The molecular gradient of Model II
To underline the savings associated with the one-center models, the approx-
imate timings for the geometry optimization on C6H5I are presented in table
15.9.4. The total CPU time needed in these calculations speak for them-

Table 15.9.4: Timings on the Iodobenzene geometry optimization on a single
250MHz R4400 SGI. Note that four iterations are made with model II due
to harder convergence criteria.

Iter Energy Change GradNorm Index StepLen TrustRad

Full calculation
0 -7216.901768 0.000000 0.000491 0 0.000963 0.500000
1 -7216.901768 0.000000 0.000211 0 0.000443 0.500000
2 -7216.901768 0.000000 0.000026 0 0.000062 0.500000

Total CPU time used in DIRAC: 2d13h10min
Model Ia

0 -7216.901405 0.000000 0.000162
1 -7216.901405 0.000000 0.000076
2 -7216.901405 0.000000 0.000067
3 -7216.901405 0.000000 0.000063

Total CPU time used in DIRAC: ∼12h
Model II
0 -7216.901336 0.000000 0.000197 0 0.000632 0.500000
1 -7216.901336 0.000000 0.000055 0 0.000315 0.500000
2 -7216.901336 0.000000 0.000011 0 0.000088 0.500000
3 -7216.901336 0.000000 0.000004 0 0.000033 0.500000

Total CPU time used in DIRAC: 6h35min35s
a Timings for this model is approximate because 5 geometry steps were rejected during
this optimization. This average time pr. SCF iteration has been used to approximate the
time used by these unsuccessful steps.

selves. The savings of model I and II when comparing to the full calculation
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are tremendous and model II is seen to be twice as fast as model I. Conver-
gence even seems to be better for model II than for model I.

The error associated with assuming that the small component Mulliken
charges are geometry independent is investigated here. A direct comparison
between the analytical and numerical gradient at the optimized geometry
can be made and it is found that they are of the same order (analytical
: 0.000212 ; numerical : 0.000194). This indicates that if the geometry
dependence of the Mulliken charges constitute and error it is a small one. A
further test that can be made is to follow how the Mulliken charges change
during the geometry optimization. This is seen for a selected number of steps

Table 15.9.5: Large and Small component charges of C6H5I in a selected
number of step in a geometry optimization.

It.1 Norm=0.221845 qL qS

C -6.934753027568 -0.0010131034606
I -51.92245559345 -0.1758138697014

...
It.9 Norm=0.000064 qL qS

C -6.977830165195 -0.0010161940709
I -51.88646546524 -0.1758136351716

It.10 Norm=0.000010 qL qS

C -6.977833765261 -0.0010161951193
I -51.88646137094 -0.1758136352522

in the geometry optimization of Iodobenzene in table 15.9.1. While the large
component charges change significantly (especially in the initial steps) the
changes of the small component charges is at most of the order 10−7 in the
initial iterations and 10−9 in the final iterations. It safe to conclude that the
assumption that

dqS
A

dXA
≈ 0 is valid.

15.9.2 Hg2Cl2

With respect to relativistic effects on equilibrium geometries, an interest-
ing application is Hg2Cl2. DHF and HF numbers have been reported by
J.Thyssen [29]. A non-relativistic uncontracted ccpVDZ basis set was used
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for chlorine and the Thallium basis set by Dyall [30] was used for Mercury5.
The small component basis was generated with RKB. The numbers show

Table 15.9.6: Equilibrium geometry of Hg2Cl2. Model II numbers are from
this work.

Bond Distance/Å
HF DHFa Model II EXPb

Hg-Hg 2.919 2.614 2.593 2.5955
Hg-Cl 2.469 2.354 2.351 2.3622

aHF and DHF numbers are taken from [29]. DHF numbers were calculated without
the SS class of integrals but with the small component Coulombic correction of [12]

bExperimental numbers are from [31]

large relativistic contraction of the bonds, especially the Hg-Hg bond as
noted by J. Thyssen [29]. It is interesting to see how well Model II performs.
The DHF calculation was done without the SS-class of integrals but with
the coulomb repulsion correction of (15.2.8). The full class of LS-integrals
was used. Model II should be computationally cheaper since no LS- nor SS-
integrals enter the gradient calculation, and still the overall result is closer
to experiment. The difference in performance of the DHF and model II cal-
culations must be due to the screening of the nucleus from the one-center
SS-integrals, present in model II but not in the DHF calculation.

15.9.3 Coin-Dimers

The energy and polarizabilities of the coin-metal (Au,Ag,Cu) dimers were
calculated in to also test the performance when calculating properties with
the one-center approximations. Large basis sets have been used, as in the full
4-component DHF calculations of Saue and Jensen [32], which also shows up
in the fact that the tabulated small component charges are close to the ones
from Mulliken analysis.

The overall conclusions to make from tables 15.9.6 -15.9.8 are that model
II does well in these cases. Total energies agree at the third digit and the
polarizabilities are very close to the ones obtained with the conventional DHF
scheme. Even at frequencies close to the poles there is a nice agreement. Here
the curve is very steep making these polarizabilites harder to calculate.
From the Au2-calculation the importance of including relativity is seen for the

5The Tl basis was used for Hg as a Hg basis set was not available at the time. Here
this basis set re-used to allow a comparison with the numbers reported by J. Thyssen [29]
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n.r. numbers calculated with the Levy-Leblond Hamiltonian. Furthermore
we report the results when using model II without SS as well as without
both SS and LS integrals. Within this model this means accounting for
multi center terms of these classes but neglecting the one-center terms. The
results underline the importance of the one-center integrals and can also be
taken as proof that the improved scaling could not just have been reached
by neglected LS and SS integrals without loosing accuracy.

15.9.4 Au4

Calculations of total energies were carried out on linear Au4 (table 15.9.10).
Considering that more approximations have been made in model II than in
model I, it is a surprise that model II gives the most correct energy. A few
other conclusions can be made from these numbers.

In this case even the one-center integrals are too numerous to fit on disk
and the real advantage of model II is therefore not put into use. This cal-
culation would benefit from the possibility to only calculate the one-center
integrals of each atom type. This would have reduced the time taken pr.
iteration to 15min compared to more than 3h30min for the full DHF scheme.
In the present implementation the savings are still considerable though.
Model III fails for this molecule. This reason is a completely wrong distri-
bution of the large component charge. It is evident from table 15.9.11 that
far too much, and even positive signed, charge is placed in the off-diagonal
elements. This gives a wrong description of the electronic interactions and
hence a wrong wave function.



15.9 Testing the Models for Hartree-Fock. 121

T
ab

le
15

.9
.7

:
D

H
F

ca
lc

u
la

ti
on

s
of

to
ta

l
en

er
gi

es
an

d
p
ol

ar
iz

ab
il
it

ie
s

of
A

u
2
.

A
d
u
al

fa
m

il
y

b
as

is
se

t
w

as
u
se

d
.

A
u
:L

-[
24

s2
0p

14
d
10

f]
.

T
ab

u
la

te
d

sm
al

l
co

m
p
on

en
t

ch
ar

ge
s

ar
e

u
se

d
.

H
ow

ev
er

th
ey

ar
e

cl
os

e
to

th
e

M
u
ll
ik

en
on

es
(0

.5
06

70
an

d
0.

50
66

4)

M
od

el
E

ne
rg

y
(a

u)
fr

eq
.

(a
u)

α
x
x

α
zz

α

Fu
ll

-3
80

70
.9

71
45

0.
00 n.
r.

0.
05

0.
10

0.
11

0.
12

65
.6

68
11

7.
79

7
69

.1
13

93
.6

58
83

.8
85

92
.4

63

11
4.

23
1

17
3.

43
7

12
8.

79
3

30
4.

32
9

11
18

.0
95

−2
24

.7
44

81
.8

56
13

6.
34

4
89

.0
06

16
3.

88
2

42
8.

62
2

−1
3.

27
2

M
od

el
II

-3
80

70
.9

65
17

0.
00

0.
05

0.
10

0.
11

0.
12

65
.6

65
69

.1
08

93
.4

62
83

.8
64

92
.4

47

11
4.

21
8

12
8.

77
1

30
4.

04
3

11
11

.3
32

−2
25

.4
51

81
.8

50
88

.9
96

16
3.

65
5

42
6.

35
3

−1
3.

51
9

M
od

el
II

(n
o

SS
)

-3
80

75
.5

18
44

0.
00

0.
05

0.
10

0.
11

0.
12

65
.6

21
69

.0
57

95
.3

32
83

.8
61

92
.3

65

11
4.

13
0

12
8.

65
8

30
4.

13
4

11
66

.5
98

−2
20

.0
90

81
.7

91
88

.9
24

16
4.

93
3

44
4.

77
3

−1
1.

78
6

M
od

el
II

(n
o

SS
,L

S)
−4

01
33

.0
71

32
0.

00
18

.2
62

63
.9

06
33

.4
77



122 Chapter 15 One-center approximations

Table 15.9.8: DHF calculations of total energies and polarizabilities of Ag2.
Dual family basis set are used Ag:L-[22s21p12d3f] For model II we use tab-
ulated small component charge (0.141510)

Model Energy (au) freq.(au) αxx αzz α

Full -10629.25246

0.00
0.05
0.10
0.11
0.13
0.14

96.997
109.052
186.938
241.741
946.428

−1093.623

156.174
193.213

1282.243
−1371.350
−204.637
−127.348

116.723
137.106
552.040
−295.956

562.739
−771.531

Model II -10629.25183

0.00
0.05
0.10
0.11
0.13
0.14

96.993
109.048
186.929
241.729
946.380

−1093.561

156.177
193.227

1284.575
−1367.935
−204.515
−127.288

116.721
137.108
552.811
−294.826

562.749
−771.470

Table 15.9.9: DHF calculations of total energies and polarizabilities of Cu2.
Dual family basis set are used Cu:L-[18s15p9d3f]. For model II we use tab-
ulated small component charge (0.044070)

Model Energy (au) freq.(au) αxx αzz α

Full -3306.89855

0.00
0.05
0.11
0.12
0.14
0.15

81.887
91.021

171.796
225.363

1005.803
−832.500

123.749
148.389

1841.883
−753.147
−152.055
−95.057

95.842
110.143
728.491
−100.807

619.850
−586.686

Model II -3306.89855

0.00
0.05
0.11
0.12
0.14
0.15

81.874
91.008

171.728
225.166

1000.714
−834.170

123.657
148.268

1827.050
−757.380
−152.246
−95.000

95.802
110.095
723.502
−102.350

616.394
−587.780
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Table 15.9.10: Total DHF energies of linear Au4 using the one-center models.
Basis set is by T.Sauea

Model Energy (au) Time pr. It. for LL,LS,SSb

Full -76141.900383 13min47s 1h12min 1h16min
I -76141.887514 13min31s 53min04s 49min22s
II -76141.891425 12min11s 19min31s 23min39s
III -77091.961331 12min01s 17min17s 20min24s

a Basis set is by T.Saue [33] (L-[23s18p14d8f])
b On 4 UltraSparc III 750MHz processors.

Table 15.9.11: Matrix of large component charges in final model III iteration
of Au4.

Column 1 Column 2 Column 3 Column 4
1 -1.176954D+04 1.117877D+04 1.150970D+03 -6.392136D+02
2 1.117877D+04 -1.176954D+04 -6.392136D+02 1.150970D+03
3 1.150970D+03 -6.392136D+02 -5.978185D+02 8.088084D+00
4 -6.392136D+02 1.150970D+03 8.088084D+00 -5.978185D+02
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Conclusions

Two approximate models for doing 4-component DHF calculations have been
presented that both build on the same ideas of the model of L. Visscher et al.
that the small component density is highly localized. Of these two model the
model denoted Model II is very successful in reducing the computational cost
associated with evaluating the LS and SS classes of integrals while providing
energies and properties close to those of the full DHF calculations. Apart
from the calculation or fetching of the relatively few one-center LS and SS
integrals this 4-component model is comparable in cost to a regular HF cal-
culation. The so called Model III requires some refinement to be successful.

Model II presents an alternative to methods employing approximate Hamil-
tonians like the ZORA [8] and Douglas-Kroll [6, 7] approaches in terms
of computational cost. Model II still includes the relativistic effects in-
cluded in the full 4-component DHF model and including spin-orbit effect
via the one-center integrals the method bears similarities with the AMFI
[22] method. However having formulated the approximation within the 4-
component framework has the huge advantage of retaining the simple for-
malism and structure of 4-component theory.
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Chapter 17

Final Thoughts.

In this thesis I have tried to present computationally economic approaches
to both correlation and relativistic effects in quantum chemical calculations
of molecular properties. The goal was to make approximations within the
standard methods for correlation (CI,MCSCF,CC,. . . ) and within the 4-
component method for relativity without loosing the accuracy of these mod-
els. Whenever making “shortcuts” in quantum chemistry there is a chance
of loosing more than you gain - the Coulomb hole model of I. Panas is an
example of that. To comment on the success of the approximations presented
here the status of these models is summarized :

• Two new 4-component one-center models were presented as extensions
to the previously reported one-center model of T. de Jong and L. Viss-
cher [1]. Of these, Model II proved to be very successful in reducing
the computational effort while still providing energies and properties
in good agreement with the full 4-component DHF and DFT mod-
els. Future research involving Model II should focus on extending it
to multi-reference methods (CI,MCSCF). Model III in its present state
needs refinements but has the potential to be developed into a success-
ful model.

With Model II, I consider the goal of an efficient and accurate approx-
imate 4-component DHF and DFT model accomplished.

• The CI-DFT and MCSCF-DFT hybrid models have been implemented
using two different long-range two-electron operators and the short-
range LDA functional along with some approximate gradient correc-
tions to this functional. Few electron calculations give promising re-
sults and indicate that all the expected benefits of a wave function
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DFT hybrid are seen. However many electron systems still present a
problem for the current functionals.

The wave function DFT hybrid implementation is general and as such
fulfills all the major requirements of a hybrid model. Double count-
ing of correlation effects is avoided and the economy of the model will
allow large scale calculations accounting for both static and dynamic
correlation. At the time of writing this thesis accurate short-range func-
tionals that allow an optimal hybrid of wave function theory and DFT
for many electron systems has not been implemented. Such function-
als have been proposed [2] and their implementation is straightforward
and requires little work with the very general wave function DFT hy-
brid implementation in dalton [3]. If sufficiently accurate short-range
functionals are found the door is opened to a very exciting world of
applications where molecular properties of systems can be investigated
with the MCSCF-DFT hybrid model.

Considering the title of this thesis the ultimate goal would be the implemen-
tation of a one-center 4-component MCSCF-DFT hybrid model in dirac [4].
This would be a very general model accounting for both correlation and rel-
ativity at once. From the summary above it is clear that the building blocks
for doing efficient 4-component calculations are present in the one-center
models. Likewise are efficient methods for both dynamic and static correla-
tion within reach and both these models could in principle be implemented
within the 4-component MCSCF available in dirac [4] as implemented by
J. Thyssen [5].

The extension of the MCSCF-DFT hybrid to allow calculations of re-
sponse properties and molecular gradients and Hessian is also a task that
can be accomplished with a foreseeable amount of work since it will mainly
involve adjustments of already available modules. All in all I foresee a bright
future for wave function DFT hybrid models in the calculation of molecu-
lar properties and I hope that more work in this direction will be continued
within dalton and dirac where this thesis leaves off.



Chapter 18

Dansk resumé

Denne afhandling opsummerer 4 års Ph.D studier og forskning ved Kemisk
Institut, Syddansk University i Odense.

Det primære formål med mine studier har været at udvikle billige og vel-
begrundede approksimationer til de eksisterende metoder til beskrivelse af
korrelations samt relativistiske effekter. Effekter der med normale beregn-
ingsmetoder er meget krævende og dyre.

Afhandlingen starter med en beskrivelse af de eksisterende metoder til
beskrivelse af korrelations effekter og viser at korrelationsenergien konverg-
erer meget langsomt med hensyn til basis set samt ekspansionen in Slater
determinanter for de multi-konfigurationelle CI og MCSCF metoder. Denne
langsomme konvergens associeres med vekselvirkningen imellem elektroner
p̊a kort afstand.

Coulomb hul modellerne introduceres som mulige kandidater til effektiv
beskrivelse af dynamiske korrelations effekter. Specielt undersøge Coulomb
hul modellen foresl̊aet af I. Panas [6]. Metoder der ikke beskriver den korrel-
erede bevægelse af elektronerne overestimerer to-elektron vekselvirkningen
da elektronerne tillades at være tæt p̊a hinanden. Coulomb hul modellen
best̊ar i at fjerne en del af to-elektron potentialet i situationen hvor to elek-
troner er tæt p̊a hinanden. Dette gøres ved at introducere en modificeret
to-elektron operator og kan s̊aledes beskrives som at et Coulomb hul mod-
elleres ind i Hamilton operatoren. Metoden testes i en serie beregninger
men kasseres da den introducere nogle ufysiske egenskaber. I geometri op-
timeringer bliver det s̊aledes en fordel at overbinde atomerne i molekyler
hvilket betyder en forværring af Hartree-Fock modellen n̊ar den modificerede
to-elektron operator anvendes. En anden vigtig egenskab der ikke overholdes
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i denne approksimative metode er at matricen af to-elektron integraler ikke
er positiv definit.

Som alternativ til Coulomb hul modellerne introduceres bølgefunktion
DFT hyrbid metoderne. Specielt fokuseres p̊a metoden pioneret af A. Savin
[2,7–12] hvor en separation af to-elektron operatoren muliggør at vekselvirk-
ninger p̊a kort afstand beskrives ved et funktional af elektrontætheden mens
vekselvirkninger over lang afstand beskrives med en bølgefunktion. Forde-
len er en mere effektiv beskrivelse af dynamisk korrelation med en hurtigere
konvergens af bølgefunktionen med hensyn til ekspansionen i Slater determi-
nanter til følge. Metoden er implementeret som en CI-DFT og MCSCF-DFT
hybrid og testes med funktionaler af LDA typen samt med f̊a approksima-
tive gradient korrigerede funktionaler. Konklusionen er at for systemer med
f̊a elektroner er LDA funktionalet tilstrækkeligt og hybrid metoderne viser
lovende resultater. For mange-elektron systemer kræves dog bedre funk-
tionaler for at en optimal hybrid kan opn̊as. Foreløbige beregninger med
approksimative gradient korrigerede funktionaler ser lovende ud og andre
funktionaler til løsning af disse problemer er blevet foresl̊aet af Toulouse et
al. [2, 11] og vil nemt kunne implementeres i dalton. En mulig fremtidig
udvidelse vil kunne inkludere muligheden for at beregne eksitationsenergier
og andre linære samt ikke-linære respons egenskaber.

I sidste kapitel presenteres to modeller der har til hensigt at reducere
beregningstiden for relativistiske 4-komponent metoder. Modellerne bygger
videre p̊a en model udviklet af T. de Jong og L. Visscher [1] og forsøger at
reducere antallet af to-elektron integraler der involverer den lille komponent
som er en konsekvens Dirac ligningen [13]. Disse integraler eksisterer ikke i
den ikke-relativistiske teori og er yderst talrige. Det udnyttes at tætheden for
den lille komponent af bølgefunktionen er meget kompakt og lokaliseret p̊a
atomerne i et molekyle. Alle integraler der involverer flere centre vil s̊aledes
være små af størrelse og kan derfor enten negligeres eller tilnærmes ved sim-
pel Coulomb repulsion imellem punktladninger. Model II repræsenterer et
godt kompromis imellem beregningstid og nøjagtighed. Kun et-center inte-
graler over den lille komponent beregnes eksplicit og disse vil typisk kunne
gemmes p̊a disk. Antallet af integraler er derfor reduceret til det samme
antal som i en ikke-relativistisk beregning. Kun et-center integraler over den
lille komponent beregnes eksplicit og disse vil typisk kunne gemmes p̊a disk.
Antallet af integraler er derfor reduceret til det samme antal som i en ikke-
relativistisk beregning, mens modellen stadig giver energier og egenskaber i
god overensstemmelse med den fulde 4-komponent beregning. Der presen-
teres resultater med et-center 4-komponent DHF samt DFT modellen, mens
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en udvidelse til 4-komponent MCSCF metoden overlades til fremtidig forskn-
ing.

Den overordnede konklusion er at byggestenene nu foreligger til udvikling
af en et-center 4-komponent MCSCF DFT hybrid metoder der vil kunne
beskrive b̊ade statiske og dynamiske korrelationseffekter samt relativistiske
effekter. MCSCF-DFT hybrid metoden sp̊as en lys fremtid s̊a snart bedre
funktionaler foreligger og et hav af anvendelser og undersøgelser vil kunne
foretages med denne metode i fremtiden.
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Chapter 19

Summary of Papers.

Paper I

In this paper we present the theory and implementation of a generic sec-
ond order restricted step hybrid model between a multi-configuration self-
consistent field wave function (MCSCF) and density functional theory (DFT).
As in the CI-DFT hybrid models previously presented by others [1–7] double
counting of correlation effects is avoided by splitting the two-electron oper-
ator into short-range and long-range parts, thereby allowing all short-range
interactions to be treated by DFT while the long-range interaction is assigned
to the MCSCF wave function treatment. For the DFT part a short-range
LDA functional is implemented and tested on the calculation of ground state
energies of He, Be, and H2O. The implementation is completely general and
will allow the use of any improved functionals that will be developed in the
future.
The conclusion is that MCSCF DFT hybrid presents an improvement over
both regular Kohn-Sham DFT and regular MCSCF theory where decreased
basis set and wave function expansion requirements make the hybrid model
economical. However the currently available short-range functionals do not
provide an optimal MCSCF DFT hybrid for many electron systems and bet-
ter functionals are needed before high quality large scale calculations are
possible.
Status : submitted to Journal of Chemical Physics.

Manuscript I

In this paper the One-Center 4-component DHF and DFT model and its
applications is presented. This is also presented in detail in Part IV (p.90)
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of the thesis and therefore this manuscript has been left out of the thesis.

The evaluation and subsequent handling of a large number of two-electron
integrals involving the small components of the 4-spinors is the major cause of
the larger computation times of relativistic 4-component calculations com-
pared to both 1- and 2-component approximate alternatives to the Dirac
equation and to non-relativistic calculations based on the Schrödinger equa-
tion. In the One-Center models we use the fact that the small component
density is highly localized. That is, the small component density located
between different centers in a molecule is negligible

DSASB ≈ DSASBδAB = DSASA

Using this fact we extend the models previously reported by T. de Jong and
L. Visscher [8] and propose approximations for the multi-center SS and LS
classes of integrals that require little computational effort. One-center SS
and LS are explicitly evaluated but will in most cases fit on disk meaning
that the number of integrals that need to be evaluated in each SCF iteration
is the same as in non-relativistic Hartree-Fock calculations. The One-Center
model can therefore be considered an economical 4-component alternative to
the 2-component based Douglas-Kroll [9, 10] and ZORA [11] approaches.
Preliminary calculations on C6H5I, Hg2Cl2, Au2, Ag2, Cu2, and Au4 show
that the accuracy on ground-state energies, equilibrium geometries and fre-
quency dependent polarizabilities is intact in the One-Center model.
Status : Nearly done!

In preparation.

• M. Patzschke, J. K. Pedersen and H. J. Aa. Jensen : The excitation
energies of Bi(V)-compounds.
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Appendix A

Electronic Repulsion Integrals
Of S-Type Gaussians

A.1 Solution Of A Gaussian ssss-ERI

In this appendix an electron repulsion integral over normalized s-type Gaus-

sian functions (sa =
(

a
π

)3/2
e−ar2) is solved. The evaluation closely follows

that of V. R. Saunders [1].

(sasb | scsd) =
(
ab

π2

)3/2 (
cd

π2

)3/2 ∫ ∞

−∞

∫ ∞

−∞

e−ar2
1e−br2

1e−cr2
1e−dr2

1

r12

dr1dr2 (A.1.1)

After applying the Gaussian Product Theorem the integral is reduced to :

(sasb | scsd) =

π−3

(
ab

a + b

)3/2 (
cd

c + d

)3/2

KabKcd

∫ ∞

−∞

∫ ∞

−∞

Ωα(r1P)Ωβ(r2Q)

r12

dr1dr2

(A.1.2)

with

Kab = exp

[
− ab

a + b
× R2

AB

]
, P̃ =

aÃ + bB̃

a + b

Ωα(r1P) =
(α
π

)3/2

exp
[−α× r2

1P

]
, α = a + b (A.1.3)

where Ã is the point of origin of sa etc. The integral in (A.1.2) is solved using
the Laplace transform of the coulomb operator

1

r12

=
2√
π

∫ ∞

0

e−r2
12t2dt =

1√
π

∫ ∞

0

e−r2
12s ds√

s
(A.1.4)
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enabling us to write the integral in (A.1.2) as

ERI =
1√
π
π−6(αβ)3/2

(
ab

a+ b

)3/2 (
cd

c+ d

)3/2

KabKcd

∫ ∞

0

∫∫
exp

[−αr2
1P − βr2

1Qsr
2
12

]
s1/2dr1dr1ds

=
1√
π
π−6(αβ)3/2

(
ab

a+ b

)3/2 (
cd

c+ d

)3/2

KabKcd

∫ ∞

0

IxIyIz · s−1/2ds (A.1.5)

where

Ix =

∫ ∞

−∞

∫ ∞

−∞
exp

[−α(x1 − Px)
2 − β(x2 −Qx)

2 − s(x1 − x2)
2
]
dx1dx2

etc. (A.1.6)

Now let u = x1 − Px, v = x2 −Qx and RPQ,x = Px −Qx. This substitution
transforms Ix to

Ix =

∫ ∞

−∞

∫ ∞

−∞
exp

[−αu2 − βv2 − s(u− v + RPQ,x)
2
]
dudv

= exp(−sR2
PQ,x)

∫ ∞

−∞
exp

[−(α + s)u2 − 2usRPQ,x

]

∫ ∞

−∞
exp

[−(β + s)v2 + 2s(u + RPQ,x)v
]
dudv (A.1.7)

Using
∫∞
−∞ exp(−ax2 + bx)dx =

√
π
a
exp

(
b2

4a

)
, to integrate the last integral

in (A.1.7) over v, one gets (after some rearrangement).

Ix =

√
π

β + s
exp

(
−sR2

PQ,x ·
β

β + s

)

∫ ∞

−∞
exp

[
−(αβ + (α+ β)s)

β + s
u2 − 2sβRPQ,x

β + s
u

]
du (A.1.8)

integrating over u, in the same manner produces :

Ix =

√
π

β + s

√
π(β + s)

(αβ + (α + β)s)

exp

[
−sR2

PQ,x ·
β

β + s
+

4s2β2R2
PQ,x/(β + s)2

4(αβ + (α+ β)s)/(β + s)

]

= π(αβ + (α + β)s)−1/2exp

[
− sαβR2

PQ,x

(αβ + (α+ β)s)

]
(A.1.9)
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The substitution η = αβ
α+β

makes Ix take the simple from :

Ix = π(α + β)−1/2(η + s)−1/2 · exp

[
−sηR2

PQ,x

η + s

]
(A.1.10)

Integration in the y- and z-directions produce similar results for Iy and Iz
allowing us to write (A.1.5) as :

ERI =

1√
π
π−6(αβ)3/2

(
ab

a+ b

)3/2 (
cd

c+ d

)3/2

KabKcd · π3 · (α + β)−3/2

∫ ∞

0

(η + s)−3/2exp

[
− ηs

η + s
R2

PQ

]
· s−1/2ds

=
1√
π
π−3

(
ab

a+ b

)3/2 (
cd

c+ d

)3/2

KabKcd · η3/2

∫ ∞

0

(η + s)−3/2 · exp

[
− ηs

c + s
· R2

PQ

]
· s−1/2ds (A.1.11)

With the substitution t2 = s
η+s

you get :

ds =
2
√

s(η + s)3/2

η
dt

s = 0⇒ t = 0

s = ∞⇒ t = 1 (A.1.12)

transforming (A.1.11) into :

ERI =
2√
π
π−3

(
ab

a + b

)3/2 (
cd

c + d

)3/2

KabKcd · √η
∫ 1

0

e−ηR2
PQt2dt (A.1.13)

With the definition of the zeroth order Boys function, F0(x) =
∫ 1

0
e−xt2dt, we

end up with the solution to a Gaussian ssss-integral being proportional to
this function, with the squared distance of the origins of the two Gaussian
charge distributions, as its argument.

(sasb | scsd) = 2π−7/2

(
ab

a + b

)3/2 (
cd

c + d

)3/2

KabKcd
√
ηF0(ηR

2
PQ) (A.1.14)

A.2 ERI’s For Higher Angular Momenta.

Integrals over Gaussians of higher angular momentum can be evaluated us-
ing recurrence relations. Following the McMurchie-Davidson [2] scheme the
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Gaussian charge distributions are expanded in Hermite Gaussian. Consider-
ing just the x-direction, the charge distribution Ωij, formed by multiplication
of to Gaussians Gi(xA) and Gj(xB), has degree i + j and can be expanded
exactly in the Hermite Gaussians of degree t ≤ i + j

Ωij =

ij∑
t=0

Eij
t Λt (A.2.1)

where the Hermite Gaussians of exponent p and centered on P are defined
as

Λt(x, p,P) = (∂/∂Px)
texp(−px2

P) (A.2.2)

The expansion coefficients Eij
t can easily be computed using recurrence rela-

tions

Ei+1,j
t =

1

2p
Eij

t−1 + XPAEi,j
t + (t + 1)Eij

t+1

Ei,j+1
t =

1

2p
Eij

t−1 + XPBEi,j
t + (t + 1)Eij

t+1 (A.2.3)

with the starting coefficient being the pre-exponential factor

E00
0 = Kx

ab (A.2.4)

The ease with which the Hermite Gaussians of all degrees are integrated (here
just the x component)

∫ ∞

−∞
Λt(x)dx = (∂/∂Px)

t

∫ ∞

−∞
exp(−px2

P)dx = δt0

√
π

p
(A.2.5)

allow us to write the solution to an electronic repulsion integral over non
spherical charge distributions (of all angular momenta). Ignoring the pre-
exponential factors and the normalization factors of the individual Cartesian
Gaussians forming the Cartesian Gaussian charge distribution, we can write
the integral over the charge distributions as

gabcd = (Ga(r1)Gb(r1) | Gc(r2)Gd(r2)) =

∫∫
Ωab(r1)Ωcd(r2)

r12

dr1dr2 =

∑
tuv

Eab
tuv

∑

τνφ

Ecd
τνφ

∫∫
Λtuv(r1)Λτνφ(r2)

r12

dr1dr2 (A.2.6)

where Eab
tuv = Eij

t E
kl
u Emn

v . Expanding the Hermite Gaussians as in (A.2.2) we
are left with an integral over to s-type Gaussian, with the solution known
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from Appendix A.1 to involve the zeroth order Boys function. Using the
same notation as in Appendix A.1, η = αβ

α+β
, α = a + b and β = c + d, we

get

gabcd = 2π−7/2

(
ab

a + b

)3/2 (
cd

c + d

)3/2 ∑
tuv

Eab
tuv

∑

τνφ

Ecd
τνφ

(
∂

∂Px

)t (
∂

∂Py

)u (
∂

∂Pz

)v (
∂

∂Qx

)τ (
∂

∂Qy

)ν (
∂

∂Qz

)φ√
ηF0(ηR

2
PQ)

(A.2.7)

From differentiation of the Boys function

∂

∂Px

F0(αR2
PQ) =

∫ 1

0

∂

∂Px

e−αR2
PQt2dt = −2αXPQ

∫ 1

0

e−αR2
PQt2t2dt

−2αXPQF1(αR2
PQ) = − ∂

∂Qx

F0(αR2
PQ) (A.2.8)

we note that the Boys function only depends on the relative separation of
the two centers of the charge distributions, and we can write (A.2.7) as

gabcd = 2π−7/2

(
ab

a + b

)3/2 (
cd

c + d

)3/2 ∑
tuv

Eab
tuv

∑

τνφ

(−1)τ+ν+φEcd
τνφ

(
∂

∂Px

)t+τ (
∂

∂Py

)u+ν (
∂

∂Px

)v+φ√
ηF0(ηR

2
PQ) (A.2.9)
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Electronic Repulsion Integrals
Using Modified 2-el. Operators.

B.1 Solution of a Gaussian ssss-ERI Using

The erf(µr12)
r12

Operator.

Evaluation of ERIs using the operator

erf(µr12)

r12

=
2

r12

√
π

∫ r12µ

0

e−t2dt =
2√
π

∫ µ

0

e−s2r212ds (B.1.1)

is essentially the same as for the reguler ERIs. The evaluation runs as in
Appendix A.1 until Eq.A.1.11. Hence, we can write the regularized electron
repulsion integral as :

regERI =
1√
π
π−3

(
ab

a+ b

)3/2 (
cd

c+ d

)3/2

KabKcd · η3/2

∫ µ

0

(η + s)−3/2 · exp

[
− ηs

η + s
· R2

PQ

]
· s−1/2ds (B.1.2)

The substitutions t2 = s
η+s

and writing ξ = µ√
η+µ2

, equivalent to Eq.A.1.12,

takes the regularized repulsion integral to the form

regERI =
2√
π
π−3

(
ab

a + b

)3/2 (
cd

c + d

)3/2

KabKcd · √η
∫ ξ

0

e−ηR2
PQt2dt

(B.1.3)
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With yet another substitution,u = 1
ξ
t, and writing τ = η · ξ2 = ηµ2

η+µ2 , we ar-
rive at

regERI =
2√
π
π−3

(
ab

a + b

)3/2 (
cd

c + d

)3/2

KabKcd ·
√
τ

∫ 1

0

e−τu2R2
PQdu

= 2π−7/2

(
ab

a + b

)3/2 (
cd

c + d

)3/2

KabKcd ·
√
τF0(τR

2
PQ)

(B.1.4)

All that has to be done to calculate the regularized integrals is to replace the
normal reduced exponent η by

η → τ = η · ξ2 =
ηµ2

η + µ2
=

1
1
η

+ 1
µ2

(B.1.5)

and the Panas correction can be applied without increasing the computa-
tional effort. It is noticed that µ → ∞ restores the original repulsion inte-
grals.

B.2 Solution of a Gaussian ssss-ERI Using

The 2µ√
π
exp(−µ2

3 r
2
12) Operator.

Evaluation of ERIs over s-type Gaussians using this operator is even simpler
than in the 1

r12
and erf(µr12)

r12
case since if will not involve the Boys function.

The evaluation runs as for the regular ssss ERI : the Gaussian product rule
is invoked taking the integral to

ERI = π−6 2µ√
π

(αβ)3/2

(
ab

a+ b

)3/2 (
cd

c+ d

)3/2

KabKcd

∫∫
exp

[
−αr2

1P − βr2
1Q −

µ2

3
r2
12

]
dr1dr2 (B.2.1)

= π−6 2µ√
π

(αβ)3/2

(
ab

a+ b

)3/2 (
cd

c+ d

)3/2

KabKcd

IxIyIz (B.2.2)

with Ix defined as

Ix =

∫ ∞

−∞

∫ ∞

−∞
exp

[
−α(x1 − Px)

2 − β(x2 −Qx)
2 − µ2

3
(x1 − x2)

2

]
dx1dx2

(B.2.3)
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To solve the Ix, Iy, Iz integrals the exact same procedure is used as in Eqs.
A.1.8 - A.1.10. The result is :

Ix = π(α + β)−1/2

(
η +

µ2

3

)−1/2

· exp

[
−

µ2

3
η

η + µ2

3

R2
PQ,x

]
(B.2.4)

where η = αβ
α+β

as previously

ERI = π−7/22µ

(
ab

a+ b

)3/2 (
cd

c+ d

)3/2

KabKcd · η3/2

(η +
µ2

3
)−3/2 · exp

[
− η µ2

3

η + µ2

3

·R2
PQ

]

= π−7/22µ

(
ab

a+ b

)3/2 (
cd

c+ d

)3/2

KabKcd

(
η

η + µ2

3

)3/2

· exp

[
− η µ2

3

η + µ2

3

·R2
PQ

]
(B.2.5)

with the substitution τ =
η 3

µ2

η+ 3
µ2

the ERI with the exp operator takes a form

familiar from the regular and Panas regularized integrals

ERI = π−7/22µ

(
ab

a+ b

)3/2 (
cd

c+ d

)3/2

KabKcd · τ 3/2 · exp
[−τR2

PQ

]
(B.2.6)



Appendix C

An Expression For µ In The
Panas Model.

Panas [3] sought an expression for µ in Eq.B.1.1 in terms of the basis set. µ
is written as

µ2 = α+ β + ε (C.0.1)

for some ε. This allows us to write the modified Coulomb operator as

θ(µr12)

r12

=
2√
π

∫ µ

0

exp(−s2r2
12)ds

=
2µ√
π

∫ 1

0

exp(−µ2s2r2
12)ds

=
2µ√
π

∫ 1

0

exp(−βs2r2
12)exp(−αs2r2

12)exp(−εs2r2
12)ds

(C.0.2)

and the modified electronic repulsion integral as

2µ√
π

∫ 1

0

∫∫
exp

[−αr2
1P − βs2r2

12

]
exp

[−εs2r2
12

]

×exp
[−βr2

2Q − αs2r2
12

]
dr1dr2ds (C.0.3)

Assuming that the electrons interact with one pinned at the center of the
charge distribution you get

2µ√
π

∫ 1

0

∫∫
exp

[−αr2
1P − βs2r2

1Q

]
exp

[−εs2R2
PQ

]

×exp
[−βr2

2Q − αs2r2
P2

]
dr1dr2ds (C.0.4)
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The integration over r1 and r2 can be carried out to obtain

2µ√
π

∫ 1

0

exp

[
− αβs2

α + βs2
R2

PQ

]
×

(
π

α+ βs2

)3/2

exp
[−εs2R2

PQ

]

×exp

[
− αβs2

αs2 + β
R2

PQ

]
×

(
π

αs2 + β

)3/2

ds (C.0.5)

To proceed α and β are taking sufficiently small

2
( ε
π

)2
∫ 1

0

(
π

α+ βs2

)3/2

× exp
[−εs2R2

PQ

] (
π

αs2 + β

)3/2

ds (C.0.6)

Next Panas assumes that εR2
PQ is of such a size that the exponential in the

integrant only contributes for small s. However taking s small the integral
becomes

2π5/2

(α · β)3/2

√
ε

∫ 1

0

exp
[−εs2R2

PQ

]
ds =

2π5/2

(α · β)3/2

√
εF0(εR

2
PQ) (C.0.7)

A requirement for ε is that the approximate expression in C.0.7 should pro-
duce the regular expression for the regularized integral (B.1.4). This is the
case if ε = τ and an expression for µ is

ε = τ

⇓
µ2 − α− β =

1
1
α

+ 1
β

+ 1
µ2

⇓

µ2 =
α + β

2
+

√(
α + β

2

)2

+ α · β (C.0.8)



Appendix D

The One-Center Models In
Dirac.

D.1 Specification of The Models.

The one-center models are specified in the ’**HAMILTONIAN’ directive of the
dirac input file with the keyword .ONECAP. This keyword additionally takes
a number (JNTV1C) to specify which model to use (I, II, or III), what charges
to use (for model I and II) and how to distribute them (model III). For model
I and II you can also manually specify what small component charges to use
with the keyword ’.SCQSET’. This keyword takes two numbers to specify el-
ement number and small component charge.

Even when doing calculations with the full set of integrals a useful appli-
cation of the one-center models is to use them in the initial SCF iterations.
The number of iterations needed with the full integral evaluation scheme is
then expected to be small. The convergence threshold for the one-center
models is specified with the keyword ’.SV1CNV’ (see figure D.1.1). When
convergence to this threshold 1 has been reached, the one-center model will
be switched off and the full set of integrals (or what was specified with the
’.INTFLG’ keyword) will be used.

By default the one-center LS and SS integrals are calculated on the fly.
In many cases the one-center integrals will fit on disk which will speed up
the calculation as the integrals then only need to be evaluated once, even in
geometry optimizations. This is controlled with the ’.DIRECT’ keyword in the
’**GENEREL’ directive. ’.DIRECT’ takes three bits specifying which integral
to calculate on the fly and which to write to disk (see figure D.1.1).

1This threshold applies to whatever convergence criteria has been specified : Electronic
gradient, total energy or absolute change in Fock matrix.
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Mulliken
charges

Tabulated
charges

INTV1C = MOD(JNTV1C,10)

JNTV1C

321

ICTLV1C = DIV(JNTV1C,10)

0 1 0 1 2 3

charges
Mulliken
charges

Distributed
charges

Distributed

A
B

C D

A :
B :
C :
D :

Charges distributed on nuclei and on point between nuclei determined by dipole moment.
Option not available. No tabulated large component charges.
Atom centered Mulliken charges.
Charges distributed on nuclei and at midt−point between nuclei.

Model :

**HAMILTONIAN
.ONECAP
33
.SV1CNV
1.0E−5

Input for model D
.TITLE
**DIRAC

1 0 0
.DIRECT
**GENEREL
.WAVE FUNCTION

Figure D.1.1: Specification of one-center models.



184 Specification of The Models.

D.2 Implemented One-Center Models.
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