DIRAC pam run in /home/milias/Work/qch/runs/miro_ilias_qch_systems/UF6/dirac/atomic_start/atoms DIRAC serial starts by allocating 1000000000 words (7629 MB) of memory out of the allowed maximum of 4200000000 words (32043 MB) Note: maximum allocatable memory for serial run can be set by pam --aw ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Radovan Bast UiT The Arctic University of Norway * * Trond Saue Universite Toulouse III France * * Lucas Visscher VU University Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer UiT The Arctic University of Norway * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Trygve Helgaker University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak xxx India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema VU University Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen VU University Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC15 (2015), * * written by R. Bast, T. Saue, L. Visscher, and H. J. Aa. Jensen, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, * * Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, * * C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, * * G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, * * R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, * * A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, * * T. Winther, and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* --- Git version information --- Git branch : master Last git commit hash : bebfe01 Last git commit author : Radovan Bast Last git commit date : Sun Oct 25 23:59:54 2015 +0100 --- Configuration and build info --- Who compiled : milias Compiled on server : login Operating system : Linux-2.6.32-504.23.4.el6.x86_64 Python version : 2.6.6 CMake version : 2.8.12.2 CMake generator : Unix Makefiles CMake build type : release MPI parallelization : False MPI launcher : unknown 64-bit integers : True Fortran compiler : /mnt/apps/intel/composer_xe_2013_sp1.1.106/bin/intel64/ifort Fortran compiler version : 14.0 Fortran compiler flags : -xHost -w -assume byterecl -g -traceback -DVAR_IFORT -i8 C compiler : /mnt/apps/intel/composer_xe_2013_sp1.1.106/bin/intel64/icc C compiler version : 14.0 C compiler flags : -xHost -g -wd981 -wd279 -wd383 -wd1572 -wd177 C++ compiler : /mnt/apps/intel/composer_xe_2013_sp1.1.106/bin/intel64/icpc C++ compiler version : 14.0.1 C++ compiler flags : -xHost -Wno-unknown-pragmas Static linking : False Builtin BLAS library : OFF Builtin LAPACK library : OFF Mathematical libraries : unknown Explicit libraries : unknown Modules definitions : HAVE_MKL_BLAS;HAVE_MKL_LAPACK;MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INT_STAR8;INSTALL_WRKMEM=64000000;MOD_QCORR;HAS_PCMSOLVER;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ERI;MOD_DNF;MOD_ESR;MOD_KRCC;MOD_SRDFT Configuration time : 2016-03-05 12:21:01.433797 ----------------------------------------------------------------- Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Sat Jun 25 09:10:58 2016 Host name : comp06 Contents of the input file -------------------------- **DIRAC .WAVE FUNCTION .ANALYZE **GENERAL .ACMOUT **HAMILTONIAN .X2C .NOAMFI **WAVE FUNCTIONS .SCF *SCF # F atom .CLOSED SHELL 4 0 .OPEN SHELL 1 5/0,6 **ANALYZE .MULPOP *END OF Contents of the molecule file ----------------------------- INTGRL F atom Dyall.v2z ; D2h C 1 3 X Y ZA 9.0 1 F 0.00000000 0.00000000 0.00000000 LARGE BASIS dyall.v2z FINISH ************************************************************************* ********************* DIRAC: No title specified !!! ********************* ************************************************************************* Jobs in this run: * Wave function * Analysis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * MO-coefficients dumped in C1 format to unformatted file DFACMO * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- F atom Dyall.v2z ; D2h Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 9.000 : 5.3546911034D+08 Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Point group: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Atoms and basis sets -------------------- Number of atom types: 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- F 1 9 34 34 L - [10s6p1d|10s6p1d] ---------------------------------------------------------------------- 34 34 L - large components ---------------------------------------------------------------------- total: 1 9 34 34 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, unpublished 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, unpublished 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 3 1 F x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates in XYZ format (angstrom) ---------------------------------------------- 1 F 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry 2 1 F x 1 Symmetry 3 2 F y 2 Symmetry 5 3 F z 3 Nuclear repulsion energy : 0.000000000000 GETLAB: AO-labels ----------------- * Large components: 10 1 L F 1 s 2 L F 1 px 3 L F 1 py 4 L F 1 pz 5 L F 1 dxx 6 L F 1 dxy 7 L F 1 dxz 8 L F 1 dyy 9 L F 1 dyz 10 L F 1 dzz * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 10 1 L Ag F s 2 L Ag F dxx 3 L Ag F dyy 4 L Ag F dzz 5 L B3uF px 6 L B2uF py 7 L B1gF dxy 8 L B1uF pz 9 L B2gF dxz 10 L B3gF dyz * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 13 6 6 1 6 1 1 0 Number of large orbitals in each symmetry: 13 6 6 1 6 1 1 0 Number of small orbitals in each symmetry: 0 0 0 0 0 0 0 0 * Large component functions Symmetry Ag ( 1) 10 functions: F s 1 functions: F dxx 1 functions: F dyy 1 functions: F dzz Symmetry B3u( 2) 6 functions: F px Symmetry B2u( 3) 6 functions: F py Symmetry B1g( 4) 1 functions: F dxy Symmetry B1u( 5) 6 functions: F pz Symmetry B2g( 6) 1 functions: F dxz Symmetry B3g( 7) 1 functions: F dyz *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Exact-Two-Component (X2C) Hamiltonian Reference: M. Ilias and T. Saue: "Implementation of an infinite-order two-component relativistic Hamiltonian by a simple one-step transformation." J. Chem. Phys., 126 (2007) 064102. additional reference for the new X2C module: S. Knecht and T. Saue: manuscript in preparation, Strasbourg 2010. * Running in two-component mode * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF Wave function jobs in execution order (expanded): * Hartree-Fock calculation =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 2 * Open shell SCF calculation using Average-of-Configuration * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 4 2 0 1.0000 1.0000 0.0000 Open shell no. 1 5.00 0 3 0.8333 0.9600 0.2400 ---------------------------------------------------------------------------- Total 9.00 2 3 f is the fraction occupation; a and alpha open shell coupling coefficients. * Bare nucleus screening correction used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 50 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input * NB!!! No e-p rotations in 2nd order optimization. ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. *************************************************************************** ***************************** Analysis module ***************************** *************************************************************************** Jobs in this run: * Mulliken population analysis =========================================================================== POPINP: Mulliken population analysis =========================================================================== * Gross populations * Label definitions based on SO-labels * Number of spinors analyzed: - Orbitals in fermion ircop E1g : 1.. 2 - Orbitals in fermion ircop E1u : 1.. 3 * Print level: 0 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- F atom Dyall.v2z ; D2h Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 9.000 : 5.3546911034D+08 Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Point group: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Atoms and basis sets -------------------- Number of atom types: 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- F 1 9 34 34 L - [10s6p1d|10s6p1d] ---------------------------------------------------------------------- 34 34 L - large components 85 85 S - small components ---------------------------------------------------------------------- total: 1 9 119 119 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, unpublished 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, unpublished 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 3 1 F x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates in XYZ format (angstrom) ---------------------------------------------- 1 F 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry 2 1 F x 1 Symmetry 3 2 F y 2 Symmetry 5 3 F z 3 Nuclear repulsion energy : 0.000000000000 Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.11E-01 L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.10E+01 L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.10E+01 L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.10E+01 S B3u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.10E-03 S B2u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.10E-03 S B1u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.10E-03 S Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.10E+01 L B3u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.61E-01 L B2u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.61E-01 L B1u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.61E-01 S Ag * Deleted: 6(Proj: 6, Lindep: 0) Smin: 0.47E-01 S B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.12E+00 S B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.12E+00 S B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.12E+00 ********************************************************************* *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** *** *** *** library version: 1.2 (August 2013) *** *** *** *** authors: - Stefan Knecht *** *** - Trond Saue *** *** contributors: - Hans Joergen Aagaard Jensen *** *** - Michal Repisky *** *** - Miroslav Ilias *** *** features: - X2C *** *** - X2C-atomic/fragment (X2C-LU) *** *** - X2C-spinfree *** *** - X2C-molecular-mean-field (X2Cmmf) *** *** *** *** Universities of *** *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** *** *** *** contact: stefan.knecht@phys.chem.ethz.ch *** ********************************************************************* *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) Output from MODHAM ------------------ * Applied strict kinetic balance ! SLSORT branch 2... ********************************************************************* *** X2C transformation ended properly. *** *** Calculation continues in two-component mode. *** ********************************************************************* >>> Time used in mk_h2c is 0.60 seconds Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 9.000 : 5.3546911034D+08 Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.11E-01 L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.10E+01 L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.10E+01 L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.10E+01 L B3u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.61E-01 L B2u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.61E-01 L B1u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.61E-01 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** Irrep 1 Irrep 2 Sum No. of electronic orbitals (NESH): 15 18 33 No. of positronic orbitals (NPSH): 0 0 0 Total no. of orbitals (NORB): 15 18 33 >>> Time used in PAMSET is 1.09 seconds ******************************************************************************* *********************** X2C relativistic HF calculation *********************** ******************************************************************************* *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. Improved by an estimate of the electronic screening (Slater's rules). ########## START ITERATION NO. 1 ########## Sat Jun 25 09:10:58 2016 E_HOMO...E_LUMO, symmetry 1: 2 -0.61434 3 0.98832 E_HOMO...E_LUMO, symmetry 2: 16 -0.00667 17 -0.00372 18 -0.00372 19 0.66941 => Calculating sum of orbital energies It. 1 -52.26492205707 0.00D+00 0.00D+00 0.00D+00 0.00100000s Scr. nuclei Sat Jun 25 ########## START ITERATION NO. 2 ########## Sat Jun 25 09:10:58 2016 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.12% 0.38% 15.88% 53.46% 0.03899395s E_HOMO...E_LUMO, symmetry 1: 2 -1.58652 3 0.93131 E_HOMO...E_LUMO, symmetry 2: 16 -0.67080 17 -0.66719 18 -0.66719 19 0.66625 >>> Total wall time: 0.00000000s, and total CPU time : 0.18497300s ########## END ITERATION NO. 2 ########## Sat Jun 25 09:10:58 2016 It. 2 -99.26746083335 4.70D+01 5.73D+00 2.07D+00 0.18497300s LL Sat Jun 25 ########## START ITERATION NO. 3 ########## Sat Jun 25 09:10:58 2016 3 *** Differential density matrix. DCOVLP = 1.0116 3 *** Differential density matrix. DVOVLP( 1) = 0.9306 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.12% 0.41% 15.88% 53.44% 0.04699194s E_HOMO...E_LUMO, symmetry 1: 2 -1.61259 3 0.94401 E_HOMO...E_LUMO, symmetry 2: 16 -0.69728 17 -0.69368 18 -0.69368 19 0.66516 >>> Total wall time: 0.00000000s, and total CPU time : 0.09198600s ########## END ITERATION NO. 3 ########## Sat Jun 25 09:10:58 2016 It. 3 -99.48791268774 2.20D-01 -4.05D-01 1.71D-01 DIIS 2 0.09198600s LL Sat Jun 25 ########## START ITERATION NO. 4 ########## Sat Jun 25 09:10:58 2016 4 *** Differential density matrix. DCOVLP = 1.0086 4 *** Differential density matrix. DVOVLP( 1) = 1.0017 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.12% 0.63% 15.86% 53.27% 0.03999400s E_HOMO...E_LUMO, symmetry 1: 2 -1.57309 3 0.96236 E_HOMO...E_LUMO, symmetry 2: 16 -0.65962 17 -0.65620 18 -0.65620 19 0.67435 >>> Total wall time: 0.00000000s, and total CPU time : 0.20296900s ########## END ITERATION NO. 4 ########## Sat Jun 25 09:10:58 2016 It. 4 -99.49173587917 3.82D-03 1.30D-01 6.57D-02 DIIS 3 0.20296900s LL Sat Jun 25 ########## START ITERATION NO. 5 ########## Sat Jun 25 09:10:58 2016 5 *** Differential density matrix. DCOVLP = 0.9996 5 *** Differential density matrix. DVOVLP( 1) = 1.0009 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.12% 0.77% 15.83% 53.17% 0.03399503s E_HOMO...E_LUMO, symmetry 1: 2 -1.57506 3 0.96212 E_HOMO...E_LUMO, symmetry 2: 16 -0.66164 17 -0.65824 18 -0.65824 19 0.67405 >>> Total wall time: 0.00000000s, and total CPU time : 0.09198600s ########## END ITERATION NO. 5 ########## Sat Jun 25 09:10:58 2016 It. 5 -99.49220775282 4.72D-04 -3.77D-02 6.46D-03 DIIS 4 0.09198600s LL Sat Jun 25 ########## START ITERATION NO. 6 ########## Sat Jun 25 09:10:58 2016 6 *** Differential density matrix. DCOVLP = 1.0002 6 *** Differential density matrix. DVOVLP( 1) = 1.0002 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.12% 1.16% 15.80% 52.95% 0.04699302s E_HOMO...E_LUMO, symmetry 1: 2 -1.57490 3 0.96220 E_HOMO...E_LUMO, symmetry 2: 16 -0.66152 17 -0.65813 18 -0.65813 19 0.67408 >>> Total wall time: 0.00000000s, and total CPU time : 0.13598000s ########## END ITERATION NO. 6 ########## Sat Jun 25 09:10:58 2016 It. 6 -99.49221435264 6.60D-06 4.01D-03 2.92D-04 DIIS 5 0.13598000s LL Sat Jun 25 ########## START ITERATION NO. 7 ########## Sat Jun 25 09:10:58 2016 7 *** Differential density matrix. DCOVLP = 1.0000 7 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.12% 2.72% 15.67% 52.24% 0.04199409s E_HOMO...E_LUMO, symmetry 1: 2 -1.57488 3 0.96221 E_HOMO...E_LUMO, symmetry 2: 16 -0.66151 17 -0.65812 18 -0.65812 19 0.67408 >>> Total wall time: 0.00000000s, and total CPU time : 0.12198000s ########## END ITERATION NO. 7 ########## Sat Jun 25 09:10:58 2016 It. 7 -99.49221436473 1.21D-08 -8.15D-05 4.16D-05 DIIS 6 0.12198000s LL Sat Jun 25 ########## START ITERATION NO. 8 ########## Sat Jun 25 09:10:58 2016 8 *** Differential density matrix. DCOVLP = 1.0000 8 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.12% 5.83% 15.30% 50.62% 0.03999400s E_HOMO...E_LUMO, symmetry 1: 2 -1.57488 3 0.96221 E_HOMO...E_LUMO, symmetry 2: 16 -0.66151 17 -0.65812 18 -0.65812 19 0.67408 >>> Total wall time: 0.00000000s, and total CPU time : 0.12198200s ########## END ITERATION NO. 8 ########## Sat Jun 25 09:10:58 2016 It. 8 -99.49221436501 2.83D-10 -1.65D-05 2.47D-06 DIIS 7 0.12198200s LL Sat Jun 25 ########## START ITERATION NO. 9 ########## Sat Jun 25 09:10:58 2016 9 *** Differential density matrix. DCOVLP = 1.0000 9 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.12% 11.13% 14.60% 49.10% 0.03499508s E_HOMO...E_LUMO, symmetry 1: 2 -1.57488 3 0.96221 E_HOMO...E_LUMO, symmetry 2: 16 -0.66151 17 -0.65812 18 -0.65812 19 0.67408 >>> Total wall time: 0.00000000s, and total CPU time : 0.13497900s ########## END ITERATION NO. 9 ########## Sat Jun 25 09:10:58 2016 It. 9 -99.49221436501 2.19D-12 7.14D-07 4.90D-07 DIIS 8 0.13497900s LL Sat Jun 25 ########## START ITERATION NO. 10 ########## Sat Jun 25 09:10:58 2016 10 *** Differential density matrix. DCOVLP = 1.0000 10 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.29% 15.99% 13.97% 47.42% 0.04499316s >>> Total wall time: 0.00000000s, and total CPU time : 0.13497900s ########## END ITERATION NO. 10 ########## Sat Jun 25 09:10:58 2016 It. 10 -99.49221436501 9.95D-14 6.20D-08 4.59D-09 DIIS 8 0.13497900s LL Sat Jun 25 * Converged. Redoing orbital energy calculation with .OPENFAC 1.0D0 * Open-shell orbital energies recalculated with .OPENFAC 1.0, corresponding to interpretation as Ionization Potentials. NB! Only for information, orbitals are not modified. E_HOMO, E_OPEN..., E_LUMO in Hartree, symmetry 1: 2 -1.57488 3 0.96221 E_HOMO, E_OPEN..., E_LUMO in Hartree, symmetry 2: 16 -0.73071 17 -0.72726 18 -0.72726 19 0.67408 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -52.26492205707 0.00D+00 0.00D+00 0.00D+00 0.00100000s Scr. nuclei Sat Jun 25 It. 2 -99.26746083335 4.70D+01 5.73D+00 2.07D+00 0.18497300s LL Sat Jun 25 It. 3 -99.48791268774 2.20D-01 -4.05D-01 1.71D-01 DIIS 2 0.09198600s LL Sat Jun 25 It. 4 -99.49173587917 3.82D-03 1.30D-01 6.57D-02 DIIS 3 0.20296900s LL Sat Jun 25 It. 5 -99.49220775282 4.72D-04 -3.77D-02 6.46D-03 DIIS 4 0.09198600s LL Sat Jun 25 It. 6 -99.49221435264 6.60D-06 4.01D-03 2.92D-04 DIIS 5 0.13598000s LL Sat Jun 25 It. 7 -99.49221436473 1.21D-08 -8.15D-05 4.16D-05 DIIS 6 0.12198000s LL Sat Jun 25 It. 8 -99.49221436501 2.83D-10 -1.65D-05 2.47D-06 DIIS 7 0.12198200s LL Sat Jun 25 It. 9 -99.49221436501 2.19D-12 7.14D-07 4.90D-07 DIIS 8 0.13497900s LL Sat Jun 25 It. 10 -99.49221436501 9.95D-14 6.20D-08 4.59D-09 DIIS 8 0.13497900s LL Sat Jun 25 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 10 iterations. * Average elapsed time per iteration: No 2-ints : 0.00000000s LL : 0.00000000s TOTAL ENERGY ------------ Electronic energy : -99.492214365013780 Other contributions to the total energy Nuclear repulsion energy : 0.000000000000000 Sum of all contributions to the energy Total energy : -99.492214365013780 Eigenvalues ----------- * Fermion symmetry E1g * Closed shell, f = 1.0000 -26.40600568036 ( 2) -1.57487945352 ( 2) * Virtual eigenvalues, f = 0.0000 0.96221352379 ( 2) 3.87363979928 ( 4) 3.87477139781 ( 6) 5.84443920162 ( 2) 27.70198498665 ( 2) 110.85677647628 ( 2) 399.39706171811 ( 2) 1448.59444913393 ( 2) 5597.79358846016 ( 2) 23519.64577402049 ( 2) * Fermion symmetry E1u * Open shell #1, f = 0.8333 -0.73071070946 ( 2) -0.72725763685 ( 4) * Virtual eigenvalues, f = 0.0000 0.67408400365 ( 2) 0.67526417199 ( 4) 3.19511963910 ( 2) 3.19930687336 ( 4) 11.55048869187 ( 2) 11.56444440259 ( 4) 42.71488417512 ( 2) 42.77729787562 ( 4) 193.76052437663 ( 2) 194.35145464735 ( 4) * HOMO - LUMO gap: E(LUMO) : 0.67408400 au (symmetry E1u) - E(HOMO) : -0.72725764 au (symmetry E1u) ------------------------------------------ gap : 1.40134164 au ************************************************************************** ********************** Mulliken population analysis ********************** ************************************************************************** Fermion ircop E1g ----------------- Fermion ircop E1g ----------------- * Electronic eigenvalue no. 1: -26.406005680363 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag F s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 2: -1.5748794535194 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag F s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 ** Total gross population of fermion ircop E1g ** Gross Total | L Ag F s -------------------------------------- total 4.00000 | 4.00000 Fermion ircop E1u ----------------- Fermion ircop E1u ----------------- * Electronic eigenvalue no. 1: -0.7307107094645 (Occupation : f = 0.8333) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uF px L B2uF py L B1uF pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 2: -0.7272576368538 (Occupation : f = 0.8333) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uF px L B2uF py L B1uF pz -------------------------------------------------------------------- alpha 0.0370 | 0.0000 0.0000 0.0370 beta 0.9630 | 0.6137 0.3492 0.0000 * Electronic eigenvalue no. 3: -0.7272576368538 (Occupation : f = 0.8333) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uF px L B2uF py L B1uF pz -------------------------------------------------------------------- alpha 0.6296 | 0.0000 0.0000 0.6296 beta 0.3704 | 0.0529 0.3175 0.0000 ** Total gross population of fermion ircop E1u ** Gross Total | L B3uF px L B2uF py L B1uF pz -------------------------------------------------------------------- total 5.00000 | 1.66667 1.66667 1.66667 *** Total gross population *** Gross Total | L Ag F s L B3uF px L B2uF py L B1uF pz ----------------------------------------------------------------------------------- total 9.00000 | 4.00000 1.66667 1.66667 1.66667 =========================================================================== * ACMOU1: Coefficients read from unformatted DFCOEF and written to unformatted DFACMO (no symmetry) =========================================================================== ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Sat Jun 25 09:10:58 2016 Host name : comp06 Dynamical Memory Usage Summary Mean allocation size (Mb) : 1271.60 Largest 10 allocations 7629.39 Mb at subroutine pamana_+0xaa for WORK in PAMANA 7629.39 Mb at subroutine psiscf_+0xb4 for WORK in PSISCF 7629.39 Mb at subroutine pamset_+0x1c3f for WORK in PAMSET - 2 7629.39 Mb at subroutine gmotra_+0x40dd for WORK in GMOTRA - part 2 7629.39 Mb at subroutine gmotra_+0x65cb for WORK in GMOTRA 7629.39 Mb at subroutine pamset_+0xb1 for WORK in PAMSET - 1 7629.39 Mb at subroutine MAIN__+0x2ae for test allocation of work array in DIRAC mai 0.76 Mb at subroutine paminp_+0xa4 for PAMINP WORK array 0.11 Mb at subroutine butobs_no_work_+0x9a for buf in butobs 0.11 Mb at subroutine butobs_no_work_+0x9a for buf in butobs Peak memory usage (Mb) : 7629.00 reached at subroutine : butobs_no_work_+0x9a for variable : buf in butobs MEMGET high-water mark: 0.00 MB ***************************************************** >>>> Node 0, utime: 2, stime: 0, minflt: 8732, majflt: 0, nvcsw: 275, nivcsw: 70, maxrss: 73928 >>>> Total WALL time used in DIRAC: 0s