DIRAC pam run in /home/milias/Work/qch/runs/miro_ilias_qch_systems/UF6/dirac/atomic_start/atoms DIRAC serial starts by allocating 1000000000 words (7629 MB) of memory out of the allowed maximum of 4200000000 words (32043 MB) Note: maximum allocatable memory for serial run can be set by pam --aw ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Radovan Bast UiT The Arctic University of Norway * * Trond Saue Universite Toulouse III France * * Lucas Visscher VU University Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer UiT The Arctic University of Norway * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Trygve Helgaker University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak xxx India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema VU University Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen VU University Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC15 (2015), * * written by R. Bast, T. Saue, L. Visscher, and H. J. Aa. Jensen, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, * * Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, * * C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, * * G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, * * R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, * * A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, * * T. Winther, and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* --- Git version information --- Git branch : master Last git commit hash : bebfe01 Last git commit author : Radovan Bast Last git commit date : Sun Oct 25 23:59:54 2015 +0100 --- Configuration and build info --- Who compiled : milias Compiled on server : login Operating system : Linux-2.6.32-504.23.4.el6.x86_64 Python version : 2.6.6 CMake version : 2.8.12.2 CMake generator : Unix Makefiles CMake build type : release MPI parallelization : False MPI launcher : unknown 64-bit integers : True Fortran compiler : /mnt/apps/intel/composer_xe_2013_sp1.1.106/bin/intel64/ifort Fortran compiler version : 14.0 Fortran compiler flags : -xHost -w -assume byterecl -g -traceback -DVAR_IFORT -i8 C compiler : /mnt/apps/intel/composer_xe_2013_sp1.1.106/bin/intel64/icc C compiler version : 14.0 C compiler flags : -xHost -g -wd981 -wd279 -wd383 -wd1572 -wd177 C++ compiler : /mnt/apps/intel/composer_xe_2013_sp1.1.106/bin/intel64/icpc C++ compiler version : 14.0.1 C++ compiler flags : -xHost -Wno-unknown-pragmas Static linking : False Builtin BLAS library : OFF Builtin LAPACK library : OFF Mathematical libraries : unknown Explicit libraries : unknown Modules definitions : HAVE_MKL_BLAS;HAVE_MKL_LAPACK;MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INT_STAR8;INSTALL_WRKMEM=64000000;MOD_QCORR;HAS_PCMSOLVER;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ERI;MOD_DNF;MOD_ESR;MOD_KRCC;MOD_SRDFT Configuration time : 2016-03-05 12:21:01.433797 ----------------------------------------------------------------- Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Sat Jun 25 09:09:14 2016 Host name : comp06 Contents of the input file -------------------------- **DIRAC .WAVE FUNCTION .ANALYZE **GENERAL .ACMOUT **HAMILTONIAN .X2C .NOAMFI **WAVE FUNCTIONS .SCF *SCF #.CLOSED SHELL #4 0 #.OPEN SHELL #1 #4/0,6 **ANALYZE .MULPOP *END OF Contents of the molecule file ----------------------------- INTGRL U atom, D2h v2z basis C 1 3 X Y ZA 92.0 1 U 0.00000000 0.00000000 0.00000000 LARGE BASIS dyall.v2z FINISH ************************************************************************* ********************* DIRAC: No title specified !!! ********************* ************************************************************************* Jobs in this run: * Wave function * Analysis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * MO-coefficients dumped in C1 format to unformatted file DFACMO * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- U atom, D2h v2z basis Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 92.000 : 1.2700881714D+08 *** WARNING (BASLIB) : Decontracting basis set - nuclear charge: 92 - basis file : dyall.v2z Reason: DIRAC cannot yet create proper small component basis for contracted large component basis when Z > 36 Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Point group: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Atoms and basis sets -------------------- Number of atom types: 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- U 1 92 347 347 L - [26s23p17d12f2g|26s23p17d12f2g] ---------------------------------------------------------------------- 347 347 L - large components ---------------------------------------------------------------------- total: 1 92 347 347 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, unpublished 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, unpublished 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 3 1 U x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates in XYZ format (angstrom) ---------------------------------------------- 1 U 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry 2 1 U x 1 Symmetry 3 2 U y 2 Symmetry 5 3 U z 3 Nuclear repulsion energy : 0.000000000000 GETLAB: AO-labels ----------------- * Large components: 35 1 L U 1 s 2 L U 1 px 3 L U 1 py 4 L U 1 pz 5 L U 1 dxx 6 L U 1 dxy 7 L U 1 dxz 8 L U 1 dyy 9 L U 1 dyz 10 L U 1 dzz 11 L U 1 fxxx 12 L U 1 fxxy 13 L U 1 fxxz 14 L U 1 fxyy 15 L U 1 fxyz 16 L U 1 fxzz 17 L U 1 fyyy 18 L U 1 fyyz 19 L U 1 fyzz 20 L U 1 fzzz 21 L U 1 g400 22 L U 1 g310 23 L U 1 g301 24 L U 1 g220 25 L U 1 g211 26 L U 1 g202 27 L U 1 g130 28 L U 1 g121 29 L U 1 g112 30 L U 1 g103 31 L U 1 g040 32 L U 1 g031 33 L U 1 g022 34 L U 1 g013 35 L U 1 g004 * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 35 1 L Ag U s 2 L Ag U dxx 3 L Ag U dyy 4 L Ag U dzz 5 L Ag U g400 6 L Ag U g220 7 L Ag U g202 8 L Ag U g040 9 L Ag U g022 10 L Ag U g004 11 L B3uU px 12 L B3uU fxxx 13 L B3uU fxyy 14 L B3uU fxzz 15 L B2uU py 16 L B2uU fxxy 17 L B2uU fyyy 18 L B2uU fyzz 19 L B1gU dxy 20 L B1gU g310 21 L B1gU g130 22 L B1gU g112 23 L B1uU pz 24 L B1uU fxxz 25 L B1uU fyyz 26 L B1uU fzzz 27 L B2gU dxz 28 L B2gU g301 29 L B2gU g121 30 L B2gU g103 31 L B3gU dyz 32 L B3gU g211 33 L B3gU g031 34 L B3gU g013 35 L Au U fxyz * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 89 59 59 23 59 23 23 12 Number of large orbitals in each symmetry: 89 59 59 23 59 23 23 12 Number of small orbitals in each symmetry: 0 0 0 0 0 0 0 0 * Large component functions Symmetry Ag ( 1) 26 functions: U s 17 functions: U dxx 17 functions: U dyy 17 functions: U dzz 2 functions: U g400 2 functions: U g220 2 functions: U g202 2 functions: U g040 2 functions: U g022 2 functions: U g004 Symmetry B3u( 2) 23 functions: U px 12 functions: U fxxx 12 functions: U fxyy 12 functions: U fxzz Symmetry B2u( 3) 23 functions: U py 12 functions: U fxxy 12 functions: U fyyy 12 functions: U fyzz Symmetry B1g( 4) 17 functions: U dxy 2 functions: U g310 2 functions: U g130 2 functions: U g112 Symmetry B1u( 5) 23 functions: U pz 12 functions: U fxxz 12 functions: U fyyz 12 functions: U fzzz Symmetry B2g( 6) 17 functions: U dxz 2 functions: U g301 2 functions: U g121 2 functions: U g103 Symmetry B3g( 7) 17 functions: U dyz 2 functions: U g211 2 functions: U g031 2 functions: U g013 Symmetry Au ( 8) 12 functions: U fxyz *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Exact-Two-Component (X2C) Hamiltonian Reference: M. Ilias and T. Saue: "Implementation of an infinite-order two-component relativistic Hamiltonian by a simple one-step transformation." J. Chem. Phys., 126 (2007) 064102. additional reference for the new X2C module: S. Knecht and T. Saue: manuscript in preparation, Strasbourg 2010. * Running in two-component mode * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF Wave function jobs in execution order (expanded): * Hartree-Fock calculation * Initial Automatic occupation based on: Total charge of atoms = 92 Charge of molecule = 0 i.e. no. of electrons = 92 =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 2 * Bare nucleus screening correction used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 50 * No quadratic convergent Hartree-Fock * DHF occupation is allowed to change during SCF cycles. * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input * NB!!! No e-p rotations in 2nd order optimization. ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. *************************************************************************** ***************************** Analysis module ***************************** *************************************************************************** Jobs in this run: * Mulliken population analysis =========================================================================== POPINP: Mulliken population analysis =========================================================================== * Gross populations * Label definitions based on SO-labels * Number of spinors analyzed: - All occupied orbitals in fermion ircop E1g - All occupied orbitals in fermion ircop E1u * Print level: 0 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- U atom, D2h v2z basis Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 92.000 : 1.2700881714D+08 *** WARNING (BASLIB) : Decontracting basis set - nuclear charge: 92 - basis file : dyall.v2z Reason: DIRAC cannot yet create proper small component basis for contracted large component basis when Z > 36 Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Point group: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Atoms and basis sets -------------------- Number of atom types: 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- U 1 92 347 347 L - [26s23p17d12f2g|26s23p17d12f2g] ---------------------------------------------------------------------- 347 347 L - large components 774 774 S - small components ---------------------------------------------------------------------- total: 1 92 1121 1121 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, unpublished 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, unpublished 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 3 1 U x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates in XYZ format (angstrom) ---------------------------------------------- 1 U 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry 2 1 U x 1 Symmetry 3 2 U y 2 Symmetry 5 3 U z 3 Nuclear repulsion energy : 0.000000000000 Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 23(Proj: 23, Lindep: 0) Smin: 0.13E-03 L B1g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B2g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B3g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 S B3u * Deleted: 26(Proj: 25, Lindep: 1) Smin: 0.66E-08 S B2u * Deleted: 26(Proj: 25, Lindep: 1) Smin: 0.66E-08 S B1u * Deleted: 26(Proj: 25, Lindep: 1) Smin: 0.66E-08 S Au * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.39E-03 L B3u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L B2u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L B1u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.22E-01 S Ag * Deleted: 73(Proj: 71, Lindep: 2) Smin: 0.21E-08 S B1g * Deleted: 13(Proj: 12, Lindep: 1) Smin: 0.10E-08 S B2g * Deleted: 13(Proj: 12, Lindep: 1) Smin: 0.10E-08 S B3g * Deleted: 13(Proj: 12, Lindep: 1) Smin: 0.10E-08 >>> Time used in Lwdn_a is 0.35 seconds ********************************************************************* *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** *** *** *** library version: 1.2 (August 2013) *** *** *** *** authors: - Stefan Knecht *** *** - Trond Saue *** *** contributors: - Hans Joergen Aagaard Jensen *** *** - Michal Repisky *** *** - Miroslav Ilias *** *** features: - X2C *** *** - X2C-atomic/fragment (X2C-LU) *** *** - X2C-spinfree *** *** - X2C-molecular-mean-field (X2Cmmf) *** *** *** *** Universities of *** *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** *** *** *** contact: stefan.knecht@phys.chem.ethz.ch *** ********************************************************************* *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) Output from MODHAM ------------------ * Applied strict kinetic balance ! SLSORT branch 2... ********************************************************************* *** X2C transformation ended properly. *** *** Calculation continues in two-component mode. *** ********************************************************************* >>> Time used in mk_h2c is 8.73 seconds Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 92.000 : 1.2700881714D+08 *** WARNING (BASLIB) : Decontracting basis set - nuclear charge: 92 - basis file : dyall.v2z Reason: DIRAC cannot yet create proper small component basis for contracted large component basis when Z > 36 Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 23(Proj: 23, Lindep: 0) Smin: 0.13E-03 L B1g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B2g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B3g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B3u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L B2u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L B1u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.22E-01 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** Irrep 1 Irrep 2 Sum No. of electronic orbitals (NESH): 129 153 282 No. of positronic orbitals (NPSH): 0 0 0 Total no. of orbitals (NORB): 129 153 282 >>> Time used in PAMSET is 12.97 seconds ******************************************************************************* *********************** X2C relativistic HF calculation *********************** ******************************************************************************* *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. Improved by an estimate of the electronic screening (Slater's rules). ########## START ITERATION NO. 1 ########## Sat Jun 25 09:09:16 2016 INFO from FNDOCC: following the Aufbau principle led to a symmetry_broken solution - the program corrected it for you. INFO from FNDOCC: the new occupation will follow below: * AUTOCC( 0) : Initial occupation: * Open shell SCF calculation using Fractional Occupation * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 88 22 22 1.0000 1.0000 0.0000 Open shell no. 1 4.00 5 0 0.4000 0.8333 0.2778 ---------------------------------------------------------------------------- Total 92.00 27 22 f is the fraction occupation; a and alpha open shell coupling coefficients. E_HOMO...E_LUMO, symmetry 1: 22 -0.20314 23 -0.14279 24 -0.14279 25 -0.12583 26 -0.12583 27 -0.12583 28 0.01157 E_HOMO...E_LUMO, symmetry 2: 151 -0.74786 152 -0.10031 => Calculating sum of orbital energies It. 1 -16358.27502070 0.00D+00 0.00D+00 0.00D+00 0.17797200s Scr. nuclei Sat Jun 25 ########## START ITERATION NO. 2 ########## Sat Jun 25 09:09:16 2016 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 11.45% 27.08% 1.02% 16.98% 1min13.582s * AUTOCC( 1) : New occupation: * Closed shell SCF calculation with 92 electrons in 20 orbitals in Fermion irrep 1 and 26 orbitals in Fermion irrep 2 E_HOMO...E_LUMO, symmetry 1: 20 -12.02265 21 -5.96412 E_HOMO...E_LUMO, symmetry 2: 155 -6.85102 156 -4.83502 >>> Total wall time: 0.00000000s, and total CPU time : 1min18.670s ########## END ITERATION NO. 2 ########## Sat Jun 25 09:09:23 2016 It. 2 -27790.34749925 1.14D+04 -7.35D+01 1.65D+02 1min18.670s LL Sat Jun 25 ########## START ITERATION NO. 3 ########## Sat Jun 25 09:09:23 2016 3 *** Differential density matrix. DCOVLP = 0.2208 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 11.50% 26.26% 1.13% 17.24% 1min13.726s INFO from FNDOCC: following the Aufbau principle led to a symmetry_broken solution - the program corrected it for you. INFO from FNDOCC: the new occupation will follow below: * AUTOCC( 2) : New occupation: * Open shell SCF calculation using Fractional Occupation * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 88 22 22 1.0000 1.0000 0.0000 Open shell no. 1 4.00 0 3 0.6667 0.9000 0.3000 ---------------------------------------------------------------------------- Total 92.00 22 25 f is the fraction occupation; a and alpha open shell coupling coefficients. E_HOMO...E_LUMO, symmetry 1: 22 -0.00551 23 0.12617 E_HOMO...E_LUMO, symmetry 2: 151 -0.16300 152 0.05308 153 0.06071 154 0.06071 155 0.22515 >>> Total wall time: 0.00000000s, and total CPU time : 1min15.750s ########## END ITERATION NO. 3 ########## Sat Jun 25 09:09:29 2016 It. 3 -27809.81905351 1.95D+01 7.80D+01 1.27D+02 DIIS 2 1min15.750s LL Sat Jun 25 ########## START ITERATION NO. 4 ########## Sat Jun 25 09:09:29 2016 4 *** Differential density matrix. DCOVLP = 0.4968 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 11.49% 27.26% 1.05% 17.00% 1min13.562s * AUTOCC( 3) : New occupation: * Closed shell SCF calculation with 92 electrons in 21 orbitals in Fermion irrep 1 and 25 orbitals in Fermion irrep 2 E_HOMO...E_LUMO, symmetry 1: 21 -4.64874 22 -1.73906 E_HOMO...E_LUMO, symmetry 2: 154 -3.01046 155 -2.92569 >>> Total wall time: 0.00000000s, and total CPU time : 1min15.641s ########## END ITERATION NO. 4 ########## Sat Jun 25 09:09:36 2016 It. 4 -28020.60398025 2.11D+02 -4.84D+01 2.05D+01 DIIS 3 1min15.641s LL Sat Jun 25 ########## START ITERATION NO. 5 ########## Sat Jun 25 09:09:36 2016 5 *** Differential density matrix. DCOVLP = 0.8567 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 11.30% 27.98% 1.00% 16.79% 1min13.555s INFO from FNDOCC: following the Aufbau principle led to a symmetry_broken solution - the program corrected it for you. INFO from FNDOCC: the new occupation will follow below: * AUTOCC( 4) : New occupation: * Open shell SCF calculation using Fractional Occupation * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 88 22 22 1.0000 1.0000 0.0000 Open shell no. 1 4.00 0 6 0.3333 0.8182 0.2727 ---------------------------------------------------------------------------- Total 92.00 22 28 f is the fraction occupation; a and alpha open shell coupling coefficients. E_HOMO...E_LUMO, symmetry 1: 22 -0.19007 23 -0.05765 E_HOMO...E_LUMO, symmetry 2: 151 -0.97614 152 -0.08674 153 -0.08674 154 -0.08674 155 -0.07217 156 -0.05276 157 -0.05276 158 0.08051 >>> Total wall time: 0.00000000s, and total CPU time : 1min15.605s ########## END ITERATION NO. 5 ########## Sat Jun 25 09:09:42 2016 It. 5 -28032.30847729 1.17D+01 1.59D+01 1.13D+01 DIIS 4 1min15.605s LL Sat Jun 25 ########## START ITERATION NO. 6 ########## Sat Jun 25 09:09:42 2016 6 *** Differential density matrix. DCOVLP = 0.7818 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 11.33% 27.94% 0.94% 16.90% 1min13.545s * AUTOCC( 5) : New occupation: * Closed shell SCF calculation with 92 electrons in 21 orbitals in Fermion irrep 1 and 25 orbitals in Fermion irrep 2 E_HOMO...E_LUMO, symmetry 1: 21 -2.43221 22 -0.29570 E_HOMO...E_LUMO, symmetry 2: 154 -0.30810 155 -0.07544 >>> Total wall time: 0.00000000s, and total CPU time : 1min15.634s ########## END ITERATION NO. 6 ########## Sat Jun 25 09:09:48 2016 It. 6 -28040.12665120 7.82D+00 -7.72D+00 2.62D+00 DIIS 5 1min15.634s LL Sat Jun 25 ########## START ITERATION NO. 7 ########## Sat Jun 25 09:09:48 2016 7 *** Differential density matrix. DCOVLP = 0.9915 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 11.70% 29.33% 0.94% 16.59% 1min12.994s INFO from FNDOCC: following the Aufbau principle led to a symmetry_broken solution - the program corrected it for you. INFO from FNDOCC: the new occupation will follow below: * AUTOCC( 6) : New occupation: * Open shell SCF calculation using Fractional Occupation * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 88 22 22 1.0000 1.0000 0.0000 Open shell no. 1 4.00 0 3 0.6667 0.9000 0.3000 ---------------------------------------------------------------------------- Total 92.00 22 25 f is the fraction occupation; a and alpha open shell coupling coefficients. E_HOMO...E_LUMO, symmetry 1: 22 -0.15731 23 0.03479 E_HOMO...E_LUMO, symmetry 2: 151 -0.95608 152 -0.08944 153 -0.08944 154 -0.08944 155 -0.01452 >>> Total wall time: 0.00000000s, and total CPU time : 1min14.941s ########## END ITERATION NO. 7 ########## Sat Jun 25 09:09:55 2016 It. 7 -28039.99808106 -1.29D-01 3.75D+00 2.57D+00 DIIS 6 1min14.941s LL Sat Jun 25 ########## START ITERATION NO. 8 ########## Sat Jun 25 09:09:55 2016 8 *** Differential density matrix. DCOVLP = 1.0006 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 12.33% 30.98% 0.86% 16.13% 1min12.309s E_HOMO...E_LUMO, symmetry 1: 22 -0.19328 23 0.06893 E_HOMO...E_LUMO, symmetry 2: 151 -0.89673 152 -0.05331 153 -0.05331 154 -0.05331 155 0.01986 >>> Total wall time: 0.00000000s, and total CPU time : 1min14.234s ########## END ITERATION NO. 8 ########## Sat Jun 25 09:10:01 2016 It. 8 -28041.03024624 1.03D+00 -1.82D+00 9.25D-02 DIIS 7 1min14.234s LL Sat Jun 25 ########## START ITERATION NO. 9 ########## Sat Jun 25 09:10:01 2016 9 *** Differential density matrix. DCOVLP = 1.0002 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 13.07% 34.48% 0.72% 15.17% 1min11.156s E_HOMO...E_LUMO, symmetry 1: 22 -0.18550 23 0.06674 E_HOMO...E_LUMO, symmetry 2: 151 -0.89835 152 -0.06238 153 -0.06238 154 -0.06238 155 0.02046 >>> Total wall time: 0.00000000s, and total CPU time : 1min13.238s ########## END ITERATION NO. 9 ########## Sat Jun 25 09:10:07 2016 It. 9 -28041.03434450 4.10D-03 -6.88D-02 2.04D-02 DIIS 8 1min13.238s LL Sat Jun 25 ########## START ITERATION NO. 10 ########## Sat Jun 25 09:10:07 2016 10 *** Differential density matrix. DCOVLP = 1.0001 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 13.35% 36.75% 0.64% 14.60% 1min10.354s E_HOMO...E_LUMO, symmetry 1: 22 -0.18655 23 0.06536 E_HOMO...E_LUMO, symmetry 2: 151 -0.90123 152 -0.06495 153 -0.06495 154 -0.06495 155 0.01989 >>> Total wall time: 0.00000000s, and total CPU time : 1min12.356s ########## END ITERATION NO. 10 ########## Sat Jun 25 09:10:13 2016 It. 10 -28041.03438716 4.27D-05 -1.08D-02 1.95D-02 DIIS 9 1min12.356s LL Sat Jun 25 ########## START ITERATION NO. 11 ########## Sat Jun 25 09:10:13 2016 11 *** Differential density matrix. DCOVLP = 1.0002 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 14.46% 38.36% 0.61% 14.03% 1min 9.094s E_HOMO...E_LUMO, symmetry 1: 22 -0.18803 23 0.06427 E_HOMO...E_LUMO, symmetry 2: 151 -0.90399 152 -0.06673 153 -0.06673 154 -0.06673 155 0.01935 >>> Total wall time: 0.00000000s, and total CPU time : 1min11.148s ########## END ITERATION NO. 11 ########## Sat Jun 25 09:10:19 2016 It. 11 -28041.03442184 3.47D-05 4.53D-03 1.16D-02 DIIS 9 1min11.148s LL Sat Jun 25 ########## START ITERATION NO. 12 ########## Sat Jun 25 09:10:19 2016 12 *** Differential density matrix. DCOVLP = 1.0004 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 14.19% 37.86% 0.59% 14.18% 1min 9.359s E_HOMO...E_LUMO, symmetry 1: 22 -0.18811 23 0.06442 E_HOMO...E_LUMO, symmetry 2: 151 -0.90393 152 -0.06647 153 -0.06647 154 -0.06647 155 0.01941 >>> Total wall time: 0.00000000s, and total CPU time : 1min11.347s ########## END ITERATION NO. 12 ########## Sat Jun 25 09:10:25 2016 It. 12 -28041.03444505 2.32D-05 6.29D-03 1.69D-03 DIIS 9 1min11.347s LL Sat Jun 25 ########## START ITERATION NO. 13 ########## Sat Jun 25 09:10:25 2016 13 *** Differential density matrix. DCOVLP = 1.0001 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 14.90% 40.06% 0.50% 13.54% 1min 8.356s E_HOMO...E_LUMO, symmetry 1: 22 -0.18807 23 0.06448 E_HOMO...E_LUMO, symmetry 2: 151 -0.90384 152 -0.06639 153 -0.06639 154 -0.06639 155 0.01945 >>> Total wall time: 0.00000000s, and total CPU time : 1min10.387s ########## END ITERATION NO. 13 ########## Sat Jun 25 09:10:31 2016 It. 13 -28041.03444612 1.06D-06 1.11D-03 1.29D-04 DIIS 9 1min10.387s LL Sat Jun 25 ########## START ITERATION NO. 14 ########## Sat Jun 25 09:10:31 2016 14 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 15.69% 42.73% 0.45% 12.85% 1min 7.319s E_HOMO...E_LUMO, symmetry 1: 22 -0.18807 23 0.06448 E_HOMO...E_LUMO, symmetry 2: 151 -0.90383 152 -0.06638 153 -0.06638 154 -0.06638 155 0.01946 >>> Total wall time: 0.00000000s, and total CPU time : 1min 9.284s ########## END ITERATION NO. 14 ########## Sat Jun 25 09:10:37 2016 It. 14 -28041.03444615 2.87D-08 2.22D-05 5.73D-05 DIIS 9 1min 9.284s LL Sat Jun 25 ########## START ITERATION NO. 15 ########## Sat Jun 25 09:10:37 2016 15 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 18.14% 47.73% 0.27% 11.36% 1min 4.427s E_HOMO...E_LUMO, symmetry 1: 22 -0.18807 23 0.06448 E_HOMO...E_LUMO, symmetry 2: 151 -0.90383 152 -0.06638 153 -0.06638 154 -0.06638 155 0.01946 >>> Total wall time: 2min 8.000s, and total CPU time : 1min 6.299s ########## END ITERATION NO. 15 ########## Sat Jun 25 09:10:42 2016 It. 15 -28041.03444615 6.88D-10 -3.12D-05 6.06D-06 DIIS 9 1min 6.299s LL Sat Jun 25 ########## START ITERATION NO. 16 ########## Sat Jun 25 09:10:42 2016 16 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 22.44% 50.85% 0.17% 10.14% 1min 0.357s E_HOMO...E_LUMO, symmetry 1: 22 -0.18807 23 0.06448 E_HOMO...E_LUMO, symmetry 2: 151 -0.90383 152 -0.06638 153 -0.06638 154 -0.06638 155 0.01946 >>> Total wall time: 0.00000000s, and total CPU time : 1min 2.102s ########## END ITERATION NO. 16 ########## Sat Jun 25 09:10:47 2016 It. 16 -28041.03444615 -2.00D-10 -5.09D-06 1.01D-06 DIIS 9 1min 2.102s LL Sat Jun 25 ########## START ITERATION NO. 17 ########## Sat Jun 25 09:10:47 2016 17 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 22.63% 51.30% 0.17% 10.13% 1min 0.164s E_HOMO...E_LUMO, symmetry 1: 22 -0.18807 23 0.06448 E_HOMO...E_LUMO, symmetry 2: 151 -0.90383 152 -0.06638 153 -0.06638 154 -0.06638 155 0.01946 >>> Total wall time: 0.00000000s, and total CPU time : 1min 1.852s ########## END ITERATION NO. 17 ########## Sat Jun 25 09:10:52 2016 It. 17 -28041.03444615 8.73D-11 9.87D-08 2.16D-07 DIIS 9 1min 1.852s LL Sat Jun 25 ########## START ITERATION NO. 18 ########## Sat Jun 25 09:10:52 2016 18 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 27.50% 52.87% 0.13% 9.45% 56.01538086s >>> Total wall time: 0.00000000s, and total CPU time :57.56124900s ########## END ITERATION NO. 18 ########## Sat Jun 25 09:10:57 2016 It. 18 -28041.03444615 1.82D-11 9.84D-08 9.60D-09 DIIS 9 57.56124900s LL Sat Jun 25 * Converged. Redoing orbital energy calculation with .OPENFAC 1.0D0 * Open-shell orbital energies recalculated with .OPENFAC 1.0, corresponding to interpretation as Ionization Potentials. NB! Only for information, orbitals are not modified. E_HOMO, E_OPEN..., E_LUMO in Hartree, symmetry 1: 22 -0.18807 23 0.06448 E_HOMO, E_OPEN..., E_LUMO in Hartree, symmetry 2: 151 -0.90383 152 -0.06638 153 -0.06638 154 -0.06638 155 0.01946 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -16358.27502070 0.00D+00 0.00D+00 0.00D+00 0.17797200s Scr. nuclei Sat Jun 25 It. 2 -27790.34749925 1.14D+04 -7.35D+01 1.65D+02 1min18.670s LL Sat Jun 25 It. 3 -27809.81905351 1.95D+01 7.80D+01 1.27D+02 DIIS 2 1min15.750s LL Sat Jun 25 It. 4 -28020.60398025 2.11D+02 -4.84D+01 2.05D+01 DIIS 3 1min15.641s LL Sat Jun 25 It. 5 -28032.30847729 1.17D+01 1.59D+01 1.13D+01 DIIS 4 1min15.605s LL Sat Jun 25 It. 6 -28040.12665120 7.82D+00 -7.72D+00 2.62D+00 DIIS 5 1min15.634s LL Sat Jun 25 It. 7 -28039.99808106 -1.29D-01 3.75D+00 2.57D+00 DIIS 6 1min14.941s LL Sat Jun 25 It. 8 -28041.03024624 1.03D+00 -1.82D+00 9.25D-02 DIIS 7 1min14.234s LL Sat Jun 25 It. 9 -28041.03434450 4.10D-03 -6.88D-02 2.04D-02 DIIS 8 1min13.238s LL Sat Jun 25 It. 10 -28041.03438716 4.27D-05 -1.08D-02 1.95D-02 DIIS 9 1min12.356s LL Sat Jun 25 It. 11 -28041.03442184 3.47D-05 4.53D-03 1.16D-02 DIIS 9 1min11.148s LL Sat Jun 25 It. 12 -28041.03444505 2.32D-05 6.29D-03 1.69D-03 DIIS 9 1min11.347s LL Sat Jun 25 It. 13 -28041.03444612 1.06D-06 1.11D-03 1.29D-04 DIIS 9 1min10.387s LL Sat Jun 25 It. 14 -28041.03444615 2.87D-08 2.22D-05 5.73D-05 DIIS 9 1min 9.284s LL Sat Jun 25 It. 15 -28041.03444615 6.88D-10 -3.12D-05 6.06D-06 DIIS 9 1min 6.299s LL Sat Jun 25 It. 16 -28041.03444615 -2.00D-10 -5.09D-06 1.01D-06 DIIS 9 1min 2.102s LL Sat Jun 25 It. 17 -28041.03444615 8.73D-11 9.87D-08 2.16D-07 DIIS 9 1min 1.852s LL Sat Jun 25 It. 18 -28041.03444615 1.82D-11 9.84D-08 9.60D-09 DIIS 9 57.56124900s LL Sat Jun 25 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 18 iterations. * Average elapsed time per iteration: No 2-ints : 0.00000000s LL : 7.52941176s TOTAL ENERGY ------------ Electronic energy : -28041.034446145793 Other contributions to the total energy Nuclear repulsion energy : 0.000000000000 Sum of all contributions to the energy Total energy : -28041.034446145793 Eigenvalues ----------- * Fermion symmetry E1g * Closed shell, f = 1.0000 -4272.005332763 ( 2) -804.861722773 ( 2) -206.222191888 ( 2) -139.430531385 ( 4) -131.898024789 ( 6) -54.135358533 ( 2) -29.755370423 ( 4) -27.912673487 ( 6) -12.458058177 ( 2) -4.343657447 ( 4) -3.865683556 ( 6) -2.050103847 ( 2) -0.188068743 ( 2) * Virtual eigenvalues, f = 0.0000 0.064484235 ( 4) 0.088366306 ( 6) 0.137703696 ( 2) 0.263396399 ( 4) 0.296257998 ( 6) 1.100922647 ( 8) 1.110039757 ( 4) 1.123513829 (10) 1.190211944 ( 6) 1.353641231 ( 2) 4.126132506 ( 8) 4.235903896 (10) 4.271028899 ( 4) 4.499209529 ( 6) 8.286714951 ( 2) 14.033238745 ( 4) 14.639158185 ( 6) 38.522553207 ( 2) 40.698926019 ( 4) 42.241512863 ( 6) 108.190157117 ( 4) 111.905087904 ( 6) 144.459032241 ( 2) 268.088474090 ( 4) 276.733896097 ( 6) 456.898840693 ( 2) 630.817995951 ( 4) 651.185317019 ( 6) 1254.907978703 ( 2) 1438.047711180 ( 4) 1488.162485640 ( 6) 3069.152526447 ( 2) 3226.838185201 ( 4) 3356.520962981 ( 6) 6747.798582661 ( 2) 7204.765795189 ( 4) 7555.619235753 ( 6) 13436.460223087 ( 2) 16263.293622707 ( 4) 17262.187581299 ( 6) 24690.919216662 ( 2) 39179.833403922 ( 4) 42487.639503172 ( 6) 42832.838217524 ( 2) 71600.931393257 ( 2) 117267.436696688 ( 2) 190731.835823029 ( 2) 311731.091846123 ( 2) 519177.302807885 ( 2) 898887.529779709 ( 2) 1700395.322208555 ( 2) * Fermion symmetry E1u * Closed shell, f = 1.0000 -778.453190132 ( 2) -633.872439861 ( 4) -193.527800344 ( 2) -159.825325447 ( 4) -48.231497168 ( 2) -39.322705978 ( 4) -15.213298753 ( 6) -14.585317311 ( 8) -10.071695191 ( 2) -7.936784331 ( 4) -1.304581902 ( 2) -0.903827779 ( 4) * Open shell #1, f = 0.6667 -0.066384058 ( 6) * Virtual eigenvalues, f = 0.0000 0.019455676 ( 2) 0.030022358 ( 4) 0.165112045 ( 2) 0.206634544 ( 4) 0.214624723 ( 8) 0.226013800 ( 6) 0.361326034 ( 8) 0.553194114 ( 6) 0.598803244 ( 8) 1.139722206 ( 2) 1.277226586 ( 6) 1.334721248 ( 8) 1.453641754 ( 4) 3.608640002 ( 6) 3.718102760 ( 8) 6.213576698 ( 2) 7.683147104 ( 4) 11.551554834 ( 6) 11.798330914 ( 8) 26.336938056 ( 2) 31.632676529 ( 4) 34.812933860 ( 6) 35.368303513 ( 8) 91.772574248 ( 2) 95.277863884 ( 6) 96.673685495 ( 8) 107.845030062 ( 4) 250.247844902 ( 6) 254.148538242 ( 8) 278.067768932 ( 2) 321.782399037 ( 4) 669.372343460 ( 6) 681.804977370 ( 8) 763.446611335 ( 2) 874.153746701 ( 4) 1928.293058038 ( 2) 1996.712777516 ( 6) 2053.694425378 ( 8) 2193.609406053 ( 4) 4498.546167426 ( 2) 5110.810864505 ( 4) 9753.528742463 ( 2) 11110.088843055 ( 4) 19857.811534803 ( 2) 22716.722897295 ( 4) 38586.083245929 ( 2) 44347.089856062 ( 4) 73020.668699094 ( 2) 84301.966299349 ( 4) 137448.997865183 ( 2) 159250.428565883 ( 4) 263075.671530747 ( 2) 304915.580531315 ( 4) 527058.335164684 ( 2) 604973.303003311 ( 4) 1158833.857324949 ( 2) 1290421.198529816 ( 4) * HOMO - LUMO gap: E(LUMO) : 0.01945568 au (symmetry E1u) - E(HOMO) : -0.06638406 au (symmetry E1u) ------------------------------------------ gap : 0.08583973 au * INFO: E(LUMO) - E(HOMO) small or negative. ************************************************************************** ********************** Mulliken population analysis ********************** ************************************************************************** Fermion ircop E1g ----------------- Fermion ircop E1g ----------------- * Electronic eigenvalue no. 1: -4272.0053327626 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 2: -804.86172277330 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 3: -206.22219188796 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 4: -139.43053138456 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.4338 | 0.1422 0.0137 0.2441 0.0338 0.0000 0.0000 beta 0.5662 | 0.0000 0.0000 0.0000 0.0000 0.3795 0.1867 * Electronic eigenvalue no. 5: -139.43053138454 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.7662 | 0.1245 0.2530 0.0225 0.3662 0.0000 0.0000 beta 0.2338 | 0.0000 0.0000 0.0000 0.0000 0.0205 0.2133 * Electronic eigenvalue no. 6: -131.89802478874 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.5576 | 0.1857 0.0248 0.3464 0.0007 0.0000 0.0000 beta 0.4424 | 0.0000 0.0000 0.0000 0.0000 0.4036 0.0388 * Electronic eigenvalue no. 7: -131.89802478871 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.2644 | 0.0005 0.0520 0.0424 0.1695 0.0000 0.0000 beta 0.7356 | 0.0000 0.0000 0.0000 0.0000 0.1964 0.5392 * Electronic eigenvalue no. 8: -131.89802478871 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B3gU dyz -------------------------------------------------------------------------------------------------- alpha 0.9780 | 0.2138 0.3231 0.0112 0.4299 0.0000 beta 0.0220 | 0.0000 0.0000 0.0000 0.0000 0.0220 * Electronic eigenvalue no. 9: -54.135358533123 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 10: -29.755370422836 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.4159 | 0.1170 0.0269 0.2561 0.0159 0.0000 0.0000 beta 0.5841 | 0.0000 0.0000 0.0000 0.0000 0.3597 0.2245 * Electronic eigenvalue no. 11: -29.755370422816 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.7841 | 0.1497 0.2398 0.0106 0.3841 0.0000 0.0000 beta 0.2159 | 0.0000 0.0000 0.0000 0.0000 0.0403 0.1755 * Electronic eigenvalue no. 12: -27.912673486584 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.5527 | 0.1844 0.0243 0.3427 0.0012 0.0000 0.0000 beta 0.4473 | 0.0000 0.0000 0.0000 0.0000 0.4130 0.0343 * Electronic eigenvalue no. 13: -27.912673486559 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.2530 | 0.0055 0.0906 0.0516 0.1053 0.0000 0.0000 beta 0.7470 | 0.0000 0.0000 0.0000 0.0000 0.1841 0.5629 * Electronic eigenvalue no. 14: -27.912673486549 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.9943 | 0.2101 0.2850 0.0057 0.4934 0.0000 0.0000 beta 0.0057 | 0.0000 0.0000 0.0000 0.0000 0.0029 0.0028 * Electronic eigenvalue no. 15: -12.458058176590 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 16: -4.3436574469729 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.7718 | 0.1315 0.2497 0.0188 0.3718 0.0000 0.0000 beta 0.2282 | 0.0000 0.0000 0.0000 0.0000 0.0254 0.2028 * Electronic eigenvalue no. 17: -4.3436574469182 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.4282 | 0.1352 0.0169 0.2479 0.0282 0.0000 0.0000 beta 0.5718 | 0.0000 0.0000 0.0000 0.0000 0.3746 0.1972 * Electronic eigenvalue no. 18: -3.8656835560697 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz -------------------------------------------------------------------------------------------------- alpha 0.9932 | 0.2057 0.2602 0.0032 0.5241 0.0000 beta 0.0068 | 0.0000 0.0000 0.0000 0.0000 0.0068 * Electronic eigenvalue no. 19: -3.8656835559913 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.2439 | 0.0155 0.1102 0.0430 0.0752 0.0000 0.0000 beta 0.7561 | 0.0000 0.0000 0.0000 0.0000 0.2030 0.5531 * Electronic eigenvalue no. 20: -3.8656835559239 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.5629 | 0.1788 0.0296 0.3538 0.0007 0.0000 0.0000 beta 0.4371 | 0.0000 0.0000 0.0000 0.0000 0.3902 0.0469 * Electronic eigenvalue no. 21: -2.0501038474434 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 22: -0.1880687434194 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 ** Total gross population of fermion ircop E1g ** Gross Total | L Ag U s L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz -------------------------------------------------------------------------------------------------------------------------------- total 44.00000 | 14.00000 4.00000 4.00000 4.00000 6.00000 6.00000 6.00000 Fermion ircop E1u ----------------- Fermion ircop E1u ----------------- * Electronic eigenvalue no. 1: -778.45319013188 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 2: -633.87243986060 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.2149 | 0.0000 0.0000 0.2149 beta 0.7851 | 0.1227 0.6624 0.0000 * Electronic eigenvalue no. 3: -633.87243986057 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.4518 | 0.0000 0.0000 0.4518 beta 0.5482 | 0.5439 0.0043 0.0000 * Electronic eigenvalue no. 4: -193.52780034445 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 5: -159.82532544723 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.3950 | 0.0000 0.0000 0.3950 beta 0.6050 | 0.5862 0.0188 0.0000 * Electronic eigenvalue no. 6: -159.82532544721 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.2716 | 0.0000 0.0000 0.2716 beta 0.7284 | 0.0805 0.6479 0.0000 * Electronic eigenvalue no. 7: -48.231497168452 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 8: -39.322705978051 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.6653 | 0.0000 0.0000 0.6653 beta 0.3347 | 0.1411 0.1936 0.0000 * Electronic eigenvalue no. 9: -39.322705977926 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.0014 | 0.0000 0.0000 0.0014 beta 0.9986 | 0.5255 0.4731 0.0000 * Electronic eigenvalue no. 10: -15.213298752761 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4310 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2052 beta 0.5690 | 0.0770 0.0020 0.2757 0.0353 0.0156 0.1634 0.0000 Gross | L B1uU fyyz L B1uU fzzz L Au U fxyz ----------------------------------------------------- alpha | 0.0596 0.1619 0.0044 beta | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 11: -15.213298752754 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.3807 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1033 beta 0.6193 | 0.0827 0.1585 0.0100 0.1174 0.1472 0.1036 0.0000 Gross | L B1uU fyyz L B1uU fzzz L Au U fxyz ----------------------------------------------------- alpha | 0.2381 0.0092 0.0301 beta | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 12: -15.213298752731 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4740 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0344 beta 0.5260 | 0.0118 0.1824 0.0571 0.1902 0.0086 0.0758 0.0000 Gross | L B1uU fyyz L B1uU fzzz L Au U fxyz ----------------------------------------------------- alpha | 0.0452 0.0002 0.3942 beta | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 13: -14.585317310814 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5316 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3428 beta 0.4684 | 0.0874 0.0067 0.3529 0.0054 0.0008 0.0151 0.0000 Gross | L B1uU fyyz L B1uU fzzz L Au U fxyz ----------------------------------------------------- alpha | 0.0173 0.1714 0.0001 beta | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 14: -14.585317310810 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4105 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0240 beta 0.5895 | 0.0297 0.0056 0.0500 0.0207 0.0804 0.4031 0.0000 Gross | L B1uU fyyz L B1uU fzzz L Au U fxyz ----------------------------------------------------- alpha | 0.3206 0.0564 0.0094 beta | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 15: -14.585317310793 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0127 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0027 beta 0.9873 | 0.1088 0.3407 0.0002 0.3887 0.1473 0.0017 0.0000 Gross | L B1uU fyyz L B1uU fzzz L Au U fxyz ----------------------------------------------------- alpha | 0.0066 0.0003 0.0032 beta | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 16: -14.585317310768 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyzz L B1uU fxxz L B1uU fyyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7595 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0876 0.1127 beta 0.2405 | 0.0027 0.1041 0.0541 0.0424 0.0372 0.0000 0.0000 Gross | L B1uU fzzz L Au U fxyz -------------------------------------- alpha | 0.0005 0.5587 beta | 0.0000 0.0000 * Electronic eigenvalue no. 17: -10.071695191135 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 18: -7.9367843311384 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.0452 | 0.0000 0.0000 0.0452 beta 0.9548 | 0.3322 0.6226 0.0000 * Electronic eigenvalue no. 19: -7.9367843310020 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.6214 | 0.0000 0.0000 0.6214 beta 0.3786 | 0.3345 0.0441 0.0000 * Electronic eigenvalue no. 20: -1.3045819023041 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 21: -0.9038277792194 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.6665 | 0.0000 0.0000 0.6665 beta 0.3335 | 0.1768 0.1567 0.0000 * Electronic eigenvalue no. 22: -0.9038277791607 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.0002 | 0.0000 0.0000 0.0002 beta 0.9998 | 0.4898 0.5100 0.0000 * Electronic eigenvalue no. 23: -0.663840576E-01 (Occupation : f = 0.6667) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1556 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0249 beta 0.8444 | 0.0883 0.3250 0.0031 0.2790 0.1366 0.0125 0.0000 Gross | L B1uU fyyz L B1uU fzzz L Au U fxyz ----------------------------------------------------- alpha | 0.0803 0.0053 0.0451 beta | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 24: -0.663840575E-01 (Occupation : f = 0.6667) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz L B1uU fyyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.6499 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0388 0.2506 beta 0.3501 | 0.0123 0.0099 0.0449 0.0285 0.2544 0.0000 0.0000 Gross | L B1uU fzzz L Au U fxyz -------------------------------------- alpha | 0.0308 0.3297 beta | 0.0000 0.0000 * Electronic eigenvalue no. 25: -0.663840575E-01 (Occupation : f = 0.6667) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4802 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2792 beta 0.5198 | 0.0831 0.0056 0.3299 0.0189 0.0063 0.0759 0.0000 Gross | L B1uU fyyz L B1uU fzzz L Au U fxyz ----------------------------------------------------- alpha | 0.0119 0.1354 0.0537 beta | 0.0000 0.0000 0.0000 ** Total gross population of fermion ircop E1u ** Gross Total | L B3uU px L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU py L B2uU fxxy L B2uU fyyy -------------------------------------------------------------------------------------------------------------------------------- total 48.00000 | 10.00000 1.02857 2.05714 2.05714 10.00000 2.05714 1.02857 Gross | L B2uU fyzz L B1uU pz L B1uU fxxz L B1uU fyyz L B1uU fzzz L Au U fxyz -------------------------------------------------------------------------------------------------- total | 2.05714 10.00000 2.05714 2.05714 1.02857 2.57143 *** Total gross population *** Gross Total | L Ag U s L Ag U dxx L Ag U dyy L Ag U dzz L B3uU px L B3uU fxxx L B3uU fxyy -------------------------------------------------------------------------------------------------------------------------------- total 92.00000 | 14.00000 4.00000 4.00000 4.00000 10.00000 1.02857 2.05714 Gross | L B3uU fxzz L B2uU py L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1gU dxy L B1uU pz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- total | 2.05714 10.00000 2.05714 1.02857 2.05714 6.00000 10.00000 2.05714 Gross | L B1uU fyyz L B1uU fzzz L B2gU dxz L B3gU dyz L Au U fxyz ----------------------------------------------------------------------------------- total | 2.05714 1.02857 6.00000 6.00000 2.57143 =========================================================================== * ACMOU1: Coefficients read from unformatted DFCOEF and written to unformatted DFACMO (no symmetry) =========================================================================== ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Sat Jun 25 09:10:57 2016 Host name : comp06 Dynamical Memory Usage Summary Mean allocation size (Mb) : 722.38 Largest 10 allocations 7629.39 Mb at subroutine pamana_+0xaa for WORK in PAMANA 7629.39 Mb at subroutine psiscf_+0xb4 for WORK in PSISCF 7629.39 Mb at subroutine pamset_+0x1c3f for WORK in PAMSET - 2 7629.39 Mb at subroutine gmotra_+0x40dd for WORK in GMOTRA - part 2 7629.39 Mb at subroutine gmotra_+0x65cb for WORK in GMOTRA 7629.39 Mb at subroutine pamset_+0xb1 for WORK in PAMSET - 1 7629.39 Mb at subroutine MAIN__+0x2ae for test allocation of work array in DIRAC mai 9.59 Mb at subroutine butobs_no_work_+0x9a for buf in butobs 9.59 Mb at subroutine butobs_no_work_+0x9a for buf in butobs 9.59 Mb at subroutine butobs_no_work_+0x9a for buf in butobs Peak memory usage (Mb) : 7630.00 reached at subroutine : butobs_no_work_+0x9a for variable : buf in butobs MEMGET high-water mark: 0.00 MB ***************************************************** >>>> Node 0, utime: 1191, stime: 28, minflt: 30632, majflt: 0, nvcsw: 888, nivcsw: 9968, maxrss: 136688 >>>> Total WALL time used in DIRAC: 1min43s