DIRAC pam run in /home/ilias/qch_work/qch_software/dirac_git/working-trunk/test/fscc_highspin DIRAC serial starts by allocating 64000000 words (488 MB) of memory DIRAC serial has no limitations in place for the amount of dynamically allocated memory Note: maximum allocatable memory for serial run can be set by pam --aw ****************************************************************************** * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-:: $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.: SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|. SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-:: ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.:: S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:. (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:. $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:i c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!::::: S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/:: $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|::: $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|::: )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/ $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii| $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/ $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~::::: &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/ $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i| MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::> MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://: MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):% MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+; MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//< MMMMMMMMMMMMR `$&&&HMM9MMMMMMM&&c$%%:/:/:.:.:/\?\?/\ _MMHk/7S/]dq&1S<&&>$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]Zk MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6& MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&& MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&F MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9& MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6 MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969k MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH& MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1 MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&& MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9Z MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6 MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][F MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$& ****************************************************************************** * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Radovan Bast Universite P. Sabatier, Toulouse France * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Trond Saue Universite P. Sabatier, Toulouse France * * Lucas Visscher VU University Amsterdam Netherlands * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Timo Fleig Universite P. Sabatier, Toulouse France * * Olav Fossgaard University of Tromsoe Norway * * Andre S. P. Gomes CNRS/Universite Lille 1 France * * Trygve Helgaker University of Oslo Norway * * Jon K. Laerdahl University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob Karlsruhe Institute of Technology Germany * * Stefan Knecht University of Southern Denmark Denmark * * Christoffer V. Larsen University of Southern Denmark Denmark * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Patrick Norman Linkoeping University Sweden * * Gosia Olejniczak University of Warsaw Poland * * Jeppe Olsen Aarhus University Denmark * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Kenneth Ruud University of Tromsoe Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Forschungszentrum Karlsruhe Germany * * Jetze Sikkema VU University Amsterdam Netherlands * * Andreas J. Thorvaldsen University of Tromsoe Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen VU University Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://dirac.chem.vu.nl * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC11 (2011), * * written by R. Bast, H. J. Aa. Jensen, T. Saue, and L. Visscher, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, T. Fleig, O. Fossgaard, * * A. S. P. Gomes, T. Helgaker, J. K. Laerdahl, J. Henriksson, * * M. Ilias, Ch. R. Jacob, S. Knecht, C. V. Larsen, H. S. Nataraj, * * P. Norman, G. Olejniczak, J. Olsen, J. K. Pedersen, M. Pernpointner, * * K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, * * J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, * * and S. Yamamoto (see http://dirac.chem.vu.nl). * * * ****************************************************************************** Compilation info ---------------- User (who compiled) | ilias@miro System | Linux-2.6.30-1-amd64 Processor | x86_64 Internal math | ON 64-bit integers | OFF MPI | OFF Fortran compiler | /usr/bin/f95 Fortran compiler version | GNU Fortran (Debian 4.6.2-9) 4.6.2 Fortran flags | -g -fcray-pointer -fbacktrace -DVAR_GFORTRAN -DVAR | _MFDS -fno-range-check -static -O0 C compiler | /usr/bin/gcc C compiler version | gcc (Debian 4.6.2-9) 4.6.2 C flags | -g -static -fpic -O0 static libraries linking | ON Configuration time | 2012-01-17 09:48:34.938198 Git revision | 65449f064f739231ca1efec825642f8589187f1e Execution time and host ----------------------- Date and time (Linux) : Tue Jan 17 09:49:59 2012 Host name : not found Contents of the input file -------------------------- ! ! Calculation of molecular oxygen using the (0,2) sector of Fock space ! **DIRAC .TITLE Moelcular oxygen. Ground and excited states (X, a, b). .WAVE F **HAMILTONIAN .LVCORR **WAVE FUNCTIONS .SCF .RELCCSD *SCF .CLOSED SHELL 6 8 .EVCCNV 1.E-10 1.E-9 *END OF &RELCCSD NELEC=2,2,3,3, DOFSPC=T, DOENER=F &END &CCFSPC MAXIT=100, DOEA2=T, NACTP=2,2,0,0 &END Contents of the molecule file ----------------------------- INTGRL Molecular oxygen at eq. distance taken from NIST. Automatic symmetry detection: will identify the Dinfh group. C 1 A 8. 2 O .0000000000 0.0000000000 0.60376 O .0000000000 0.0000000000 -0.60376 LARGE BASIS cc-pVDZ FINISH ************************************************************************** *********** Moelcular oxygen. Ground and excited states (X, a, *********** ************************************************************************** Jobs in this run: * Wave function ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in four-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals - SL-integrals - SS-integrals - GT-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 DFPCMO: IBEIG read in I2 format. * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- Molecular oxygen at eq. distance taken from NIST. Automatic symmetry detection: will identify the Dinfh group. Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 8.000 : 5.8631436655D+08 SYMADD: Requested addition of symmetry -------------------------------------- Symmetry threshold: 0.50E-05 Original Coordinates -------------------- 8 0.00000000 0.00000000 1.14094105 1 8 0.00000000 0.00000000 -1.14094105 1 Symmetry class found: D(oo,h) Centered and Rotated -------------------- 8 0.00000000 0.00000000 1.14094105 1 8 0.00000000 0.00000000 -1.14094105 1 The following elements were found: X Y Z Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Full group is: D(oo,h) Represented as: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 28.047023097920 Atoms and basis sets -------------------- Number of atom types: 1 Total number of atoms: 2 label atoms charge prim cont basis ---------------------------------------------------------------------- O 2 8 27 15 L - [9s4p1d|3s2p1d] 68 68 S - [4s10p4d1f|4s10p4d1f] ---------------------------------------------------------------------- 54 30 L - large components 136 136 S - small components ---------------------------------------------------------------------- total: 2 16 190 166 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 Elements References -------- ---------- H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994). Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published) Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993). Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). Ga - Kr: A.K. Wilson, D.E. Woon, K.A. Peterson, T.H. Dunning, Jr., J. Chem. Phys., 110, 7667 (1999) Cartesian Coordinates --------------------- Total number of coordinates: 6 1 O 1 x 0.0000000000 2 y 0.0000000000 3 z 1.1409410506 4 O 2 x 0.0000000000 5 y 0.0000000000 6 z -1.1409410506 Cartesian coordinates xyz format (angstrom) ------------------------------------------- 2 O 0.0000000000 0.0000000000 0.6037600000 O 0.0000000000 0.0000000000 -0.6037600000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 1 1 1 0 1 1 1 0 Symmetry 1 1 O z [ 3 - 6 ]/2 Symmetry 2 2 O x [ 1 + 4 ]/2 Symmetry 3 3 O y [ 2 + 5 ]/2 Symmetry 5 4 O z [ 3 + 6 ]/2 Symmetry 6 5 O x [ 1 - 4 ]/2 Symmetry 7 6 O y [ 2 - 5 ]/2 Interatomic separations (in Angstroms): --------------------------------------- O 1 O 2 O 1 0.000000 O 2 1.207520 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: O 2 O 1 1.207520 Nuclear repulsion energy : 28.047023097920 GETLAB: AO-labels ----------------- * Large components: 20 1 L O 1 s 2 L O 2 s 3 L O 1 px 4 L O 1 py 5 L O 1 pz 6 L O 2 px 7 L O 2 py 8 L O 2 pz 9 L O 1 dxx 10 L O 1 dxy 11 L O 1 dxz 12 L O 1 dyy 13 L O 1 dyz 14 L O 1 dzz 15 L O 2 dxx 16 L O 2 dxy 17 L O 2 dxz 18 L O 2 dyy 19 L O 2 dyz 20 L O 2 dzz * Small components: 40 21 S O 1 s 22 S O 2 s 23 S O 1 px 24 S O 1 py 25 S O 1 pz 26 S O 2 px 27 S O 2 py 28 S O 2 pz 29 S O 1 dxx 30 S O 1 dxy 31 S O 1 dxz 32 S O 1 dyy 33 S O 1 dyz 34 S O 1 dzz 35 S O 2 dxx 36 S O 2 dxy 37 S O 2 dxz 38 S O 2 dyy 39 S O 2 dyz 40 S O 2 dzz 41 S O 1 fxxx 42 S O 1 fxxy 43 S O 1 fxxz 44 S O 1 fxyy 45 S O 1 fxyz 46 S O 1 fxzz 47 S O 1 fyyy 48 S O 1 fyyz 49 S O 1 fyzz 50 S O 1 fzzz 51 S O 2 fxxx 52 S O 2 fxxy 53 S O 2 fxxz 54 S O 2 fxyy 55 S O 2 fxyz 56 S O 2 fxzz 57 S O 2 fyyy 58 S O 2 fyyz 59 S O 2 fyzz 60 S O 2 fzzz GETLAB: SO-labels ----------------- * Large components: 20 1 L Ag O s 2 L Ag O pz 3 L Ag O dxx 4 L Ag O dyy 5 L Ag O dzz 6 L B3uO px 7 L B3uO dxz 8 L B2uO py 9 L B2uO dyz 10 L B1gO dxy 11 L B1uO s 12 L B1uO pz 13 L B1uO dxx 14 L B1uO dyy 15 L B1uO dzz 16 L B2gO px 17 L B2gO dxz 18 L B3gO py 19 L B3gO dyz 20 L Au O dxy * Small components: 40 21 S Ag O s 22 S Ag O pz 23 S Ag O dxx 24 S Ag O dyy 25 S Ag O dzz 26 S Ag O fxxz 27 S Ag O fyyz 28 S Ag O fzzz 29 S B3uO px 30 S B3uO dxz 31 S B3uO fxxx 32 S B3uO fxyy 33 S B3uO fxzz 34 S B2uO py 35 S B2uO dyz 36 S B2uO fxxy 37 S B2uO fyyy 38 S B2uO fyzz 39 S B1gO dxy 40 S B1gO fxyz 41 S B1uO s 42 S B1uO pz 43 S B1uO dxx 44 S B1uO dyy 45 S B1uO dzz 46 S B1uO fxxz 47 S B1uO fyyz 48 S B1uO fzzz 49 S B2gO px 50 S B2gO dxz 51 S B2gO fxxx 52 S B2gO fxyy 53 S B2gO fxzz 54 S B3gO py 55 S B3gO dyz 56 S B3gO fxxy 57 S B3gO fyyy 58 S B3gO fyzz 59 S Au O dxy 60 S Au O fxyz Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 37 20 20 6 37 20 20 6 Number of large orbitals in each symmetry: 8 3 3 1 8 3 3 1 Number of small orbitals in each symmetry: 29 17 17 5 29 17 17 5 * Large component functions Symmetry Ag ( 1) 3 functions: O s 1+2 2 functions: O pz 1-2 1 functions: O dxx 1+2 1 functions: O dyy 1+2 1 functions: O dzz 1+2 Symmetry B3u( 2) 2 functions: O px 1+2 1 functions: O dxz 1-2 Symmetry B2u( 3) 2 functions: O py 1+2 1 functions: O dyz 1-2 Symmetry B1g( 4) 1 functions: O dxy 1+2 Symmetry B1u( 5) 3 functions: O s 1-2 2 functions: O pz 1+2 1 functions: O dxx 1-2 1 functions: O dyy 1-2 1 functions: O dzz 1-2 Symmetry B2g( 6) 2 functions: O px 1-2 1 functions: O dxz 1+2 Symmetry B3g( 7) 2 functions: O py 1-2 1 functions: O dyz 1+2 Symmetry Au ( 8) 1 functions: O dxy 1-2 * Small component functions Symmetry Ag ( 1) 4 functions: O s 1+2 10 functions: O pz 1-2 4 functions: O dxx 1+2 4 functions: O dyy 1+2 4 functions: O dzz 1+2 1 functions: O fxxz1-2 1 functions: O fyyz1-2 1 functions: O fzzz1-2 Symmetry B3u( 2) 10 functions: O px 1+2 4 functions: O dxz 1-2 1 functions: O fxxx1+2 1 functions: O fxyy1+2 1 functions: O fxzz1+2 Symmetry B2u( 3) 10 functions: O py 1+2 4 functions: O dyz 1-2 1 functions: O fxxy1+2 1 functions: O fyyy1+2 1 functions: O fyzz1+2 Symmetry B1g( 4) 4 functions: O dxy 1+2 1 functions: O fxyz1-2 Symmetry B1u( 5) 4 functions: O s 1-2 10 functions: O pz 1+2 4 functions: O dxx 1-2 4 functions: O dyy 1-2 4 functions: O dzz 1-2 1 functions: O fxxz1+2 1 functions: O fyyz1+2 1 functions: O fzzz1+2 Symmetry B2g( 6) 10 functions: O px 1-2 4 functions: O dxz 1+2 1 functions: O fxxx1-2 1 functions: O fxyy1-2 1 functions: O fxzz1-2 Symmetry B3g( 7) 10 functions: O py 1-2 4 functions: O dyz 1+2 1 functions: O fxxy1-2 1 functions: O fyyy1-2 1 functions: O fyzz1-2 Symmetry Au ( 8) 4 functions: O dxy 1-2 1 functions: O fxyz1+2 *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Dirac-Coulomb Hamiltonian * SS integrals neglected: Interatomic Coulombic SS-contributions modelled by classical repulsion of small component atomic charges using tabulated charges. * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 1 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - contracted large component basis set - uncontracted small component basis set Information about the restricted kinetic balance scheme: * Default RKB projection: 1: Pre-projection in scalar basis 2: Removal of unphysical solutions (via diagonalization of free particle Hamiltonian) ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Jobs in this run (in execution order): * Hartree-Fock calculation * Run RELCCSD code =========================================================================== SCFINP: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 2 * Closed shell SCF calculation with 14 electrons in 3 orbitals in Fermion irrep 1 4 orbitals in Fermion irrep 2 * Bare nucleus screening correction used for start guess * General print level : 0 ***** TRIAL FUNCTION ***** * Trial vectors read from file DFCOEF ***** CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-10 Allowed convergence:1.000D-09 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 50 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. SL-integrals from iteration 1 ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. EHMIN: 1000.00000 EHMAX: 100.00000 EPMIN: -1.00000 EPMAX: -1000.00000 No input for integrals transformation, using defaults =========================================================================== TRAINP: Set-up for index transformation =========================================================================== * General print level : 0 * Electronic orbitals only. * Total active space. Fermion ircop:E1g No explicit orbitals specified Fermion ircop:E1u No explicit orbitals specified * Set-up for 2-index transformation * SS Integrals not included in core Fock-matrix * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 * Set-up for 4-index transformation * Following scheme : 6 - write half-transformed integrals (ij|rs) to disk - sorting of intermediate 1HT integrals is disabled * Screening threshold :1.00E-14 * MO integral threshold :1.00E-14 * SS Integrals not transformed. * Gaunt Integrals not transformed. * 4-index transformed integrals written to file. * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* Nuclear contribution to dipole moments -------------------------------------- All components zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 1(Proj: 1, Lindep: 0) L B1g * Deleted: 0(Proj: 0, Lindep: 0) L B2g * Deleted: 0(Proj: 0, Lindep: 0) L B3g * Deleted: 0(Proj: 0, Lindep: 0) S B3u * Deleted: 1(Proj: 1, Lindep: 0) S B2u * Deleted: 1(Proj: 1, Lindep: 0) S B1u * Deleted: 5(Proj: 5, Lindep: 0) S Au * Deleted: 0(Proj: 0, Lindep: 0) L B3u * Deleted: 0(Proj: 0, Lindep: 0) L B2u * Deleted: 0(Proj: 0, Lindep: 0) L B1u * Deleted: 1(Proj: 1, Lindep: 0) L Au * Deleted: 0(Proj: 0, Lindep: 0) S Ag * Deleted: 5(Proj: 5, Lindep: 0) S B1g * Deleted: 0(Proj: 0, Lindep: 0) S B2g * Deleted: 1(Proj: 1, Lindep: 0) S B3g * Deleted: 1(Proj: 1, Lindep: 0) Output from MODHAM ------------------ * Applied strict kinetic balance ! Output from LINSYM ------------------ Parity MJ Functions(total) Functions(LC) Functions(SC) 1 1/2 18 9 9 1 -3/2 8 4 4 1 5/2 2 1 1 -1 1/2 18 9 9 -1 -3/2 8 4 4 -1 5/2 2 1 1 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** Irrep 1 Irrep 2 Sum No. of electronic orbitals (NESH): 14 14 28 No. of positronic orbitals (NPSH): 14 14 28 Total no. of orbitals (NORB): 28 28 56 **************************************************************************** ************************* Hartree-Fock calculation ************************* **************************************************************************** *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. Improved by an estimate of the electronic screening (Slater's rules). ########## START ITERATION NO. 1 ########## Tue Jan 17 09:49:59 2012 It. 1 -54.04463176315 1.00D+20 0.00D+00 0.00D+00 0.05200300s Scr. nuclei Tue Jan 17 ########## START ITERATION NO. 2 ########## Tue Jan 17 09:49:59 2012 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08000499s SOfock:SL 1.00D-12 0.00% 1.15% 0.00% 0.00% 0.71204504s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.91205706s ########## END ITERATION NO. 2 ########## Tue Jan 17 09:49:59 2012 It. 2 -148.1757861222 9.41D+01 -2.11D+00 7.48D-01 0.91205706s LL SL Tue Jan 17 ########## START ITERATION NO. 3 ########## Tue Jan 17 09:50:00 2012 3 *** Differential density matrix. DCOVLP = 1.0580 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08000505s SOfock:SL 1.00D-12 0.00% 0.96% 0.00% 0.00% 0.70804501s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.85205293s ########## END ITERATION NO. 3 ########## Tue Jan 17 09:50:00 2012 It. 3 -148.2625353604 8.67D-02 1.50D-01 1.01D-01 DIIS 2 0.85205293s LL SL Tue Jan 17 ########## START ITERATION NO. 4 ########## Tue Jan 17 09:50:01 2012 4 *** Differential density matrix. DCOVLP = 0.9889 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08000493s SOfock:SL 1.00D-12 0.00% 1.85% 0.00% 0.00% 0.70804501s cp DFCOEF DFCOEF.BEST >>> Total wall time: 0.00000000s >>> Total CPU-time : 0.85205388s ########## END ITERATION NO. 4 ########## Tue Jan 17 09:50:01 2012 It. 4 -148.2646767668 2.14D-03 -2.37D-02 1.99D-02 DIIS 3 0.85205388s LL SL Tue Jan 17 ########## START ITERATION NO. 5 ########## Tue Jan 17 09:50:01 2012 5 *** Differential density matrix. DCOVLP = 1.0028 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08000493s SOfock:SL 1.00D-12 0.00% 2.76% 0.00% 0.00% 0.71204495s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.84805298s ########## END ITERATION NO. 5 ########## Tue Jan 17 09:50:01 2012 It. 5 -148.2647707820 9.40D-05 2.62D-03 2.42D-03 DIIS 4 0.84805298s LL SL Tue Jan 17 ########## START ITERATION NO. 6 ########## Tue Jan 17 09:50:02 2012 6 *** Differential density matrix. DCOVLP = 1.0001 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08000493s SOfock:SL 1.00D-12 0.00% 4.38% 0.00% 0.00% 0.71204424s cp DFCOEF DFCOEF.BEST >>> Total wall time: 2.00000000s >>> Total CPU-time : 0.90405607s ########## END ITERATION NO. 6 ########## Tue Jan 17 09:50:02 2012 It. 6 -148.2647725262 1.74D-06 -2.14D-04 5.25D-04 DIIS 5 0.90405607s LL SL Tue Jan 17 ########## START ITERATION NO. 7 ########## Tue Jan 17 09:50:04 2012 7 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08000517s SOfock:SL 1.00D-12 0.00% 6.25% 0.00% 0.00% 0.70804405s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.85605335s ########## END ITERATION NO. 7 ########## Tue Jan 17 09:50:04 2012 It. 7 -148.2647727424 2.16D-07 -9.16D-05 3.29D-04 DIIS 6 0.85605335s LL SL Tue Jan 17 ########## START ITERATION NO. 8 ########## Tue Jan 17 09:50:05 2012 8 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08000469s SOfock:SL 1.00D-12 0.00% 6.83% 0.00% 0.00% 0.70804405s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.85205364s ########## END ITERATION NO. 8 ########## Tue Jan 17 09:50:05 2012 It. 8 -148.2647729139 1.71D-07 -1.17D-04 2.23D-04 DIIS 7 0.85205364s LL SL Tue Jan 17 ########## START ITERATION NO. 9 ########## Tue Jan 17 09:50:06 2012 9 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08000469s SOfock:SL 1.00D-12 0.00% 6.71% 0.00% 0.00% 0.71204424s cp DFCOEF DFCOEF.BEST >>> Total wall time: 0.00000000s >>> Total CPU-time : 0.84805298s ########## END ITERATION NO. 9 ########## Tue Jan 17 09:50:06 2012 It. 9 -148.2647730624 1.49D-07 -2.17D-04 3.98D-05 DIIS 8 0.84805298s LL SL Tue Jan 17 ########## START ITERATION NO. 10 ########## Tue Jan 17 09:50:06 2012 10 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08000517s SOfock:SL 1.00D-12 0.00% 8.72% 0.00% 0.00% 0.70804405s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.84805298s ########## END ITERATION NO. 10 ########## Tue Jan 17 09:50:06 2012 It. 10 -148.2647730663 3.82D-09 -3.93D-05 1.40D-06 DIIS 9 0.84805298s LL SL Tue Jan 17 ########## START ITERATION NO. 11 ########## Tue Jan 17 09:50:07 2012 11 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08000469s SOfock:SL 1.00D-12 0.00% 18.24% 0.00% 0.30% 0.70404434s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.84805298s ########## END ITERATION NO. 11 ########## Tue Jan 17 09:50:07 2012 It. 11 -148.2647730663 1.71D-12 -4.31D-07 4.10D-07 DIIS 9 0.84805298s LL SL Tue Jan 17 ########## START ITERATION NO. 12 ########## Tue Jan 17 09:50:08 2012 12 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08400631s SOfock:SL 1.00D-12 0.00% 22.98% 0.00% 2.30% 0.70004272s DIIS aborted because of the last two iterations the lowest energy has the largest gradient and DIIS minimizes gradient !!! >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.84405327s ########## END ITERATION NO. 12 ########## Tue Jan 17 09:50:08 2012 It. 12 -148.2647730663 -3.98D-13 -1.13D-07 8.19D-08 DAMP0.25 0.84405327s LL SL Tue Jan 17 ########## START ITERATION NO. 13 ########## Tue Jan 17 09:50:09 2012 13 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.31% 0.00% 0.00% 0.08000565s SOfock:SL 1.00D-12 0.00% 32.00% 0.00% 5.64% 0.70004368s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.83605194s ########## END ITERATION NO. 13 ########## Tue Jan 17 09:50:09 2012 It. 13 -148.2647730663 8.53D-13 1.93D-08 7.86D-08 DAMP0.25 0.83605194s LL SL Tue Jan 17 ########## START ITERATION NO. 14 ########## Tue Jan 17 09:50:10 2012 14 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.43% 0.00% 0.00% 0.08000469s SOfock:SL 1.00D-12 0.00% 35.22% 0.00% 6.42% 0.69604301s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.83605194s ########## END ITERATION NO. 14 ########## Tue Jan 17 09:50:10 2012 It. 14 -148.2647730663 -7.39D-13 1.16D-08 4.20D-08 DIIS 2 0.83605194s LL SL Tue Jan 17 ########## START ITERATION NO. 15 ########## Tue Jan 17 09:50:11 2012 15 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.39% 0.00% 0.00% 0.08000469s SOfock:SL 1.00D-12 0.00% 34.96% 0.00% 6.13% 0.69604301s cp DFCOEF DFCOEF.BEST >>> Total wall time: 0.00000000s >>> Total CPU-time : 0.84005165s ########## END ITERATION NO. 15 ########## Tue Jan 17 09:50:11 2012 It. 15 -148.2647730663 1.31D-12 -1.48D-08 1.66D-08 DIIS 2 0.84005165s LL SL Tue Jan 17 ########## START ITERATION NO. 16 ########## Tue Jan 17 09:50:11 2012 16 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 3.25% 0.00% 0.13% 0.08000469s SOfock:SL 1.00D-12 0.03% 45.24% 0.00% 12.64% 0.69204330s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.83605385s ########## END ITERATION NO. 16 ########## Tue Jan 17 09:50:11 2012 It. 16 -148.2647730663 6.82D-13 -4.04D-09 1.33D-08 DAMP0.25 0.83605385s LL SL Tue Jan 17 ########## START ITERATION NO. 17 ########## Tue Jan 17 09:50:12 2012 17 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 5.73% 0.00% 0.08% 0.08000469s SOfock:SL 1.00D-12 2.45% 49.63% 0.00% 21.45% 0.68004227s DIIS aborted because of the last two iterations the lowest energy has the largest gradient and DIIS minimizes gradient !!! >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.83205128s ########## END ITERATION NO. 17 ########## Tue Jan 17 09:50:12 2012 It. 17 -148.2647730663 -8.53D-13 -1.70D-09 1.16D-08 DAMP0.25 0.83205128s LL SL Tue Jan 17 ########## START ITERATION NO. 18 ########## Tue Jan 17 09:50:13 2012 18 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 5.69% 0.00% 0.10% 0.12000751s SOfock:SL 1.00D-12 3.09% 49.33% 0.00% 18.79% 0.66004181s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.85205269s ########## END ITERATION NO. 18 ########## Tue Jan 17 09:50:13 2012 It. 18 -148.2647730663 1.31D-12 -1.90D-09 9.93D-09 DAMP0.25 0.85205269s LL SL Tue Jan 17 ########## START ITERATION NO. 19 ########## Tue Jan 17 09:50:14 2012 19 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 6.37% 0.00% 0.10% 0.08000565s SOfock:SL 1.00D-12 2.58% 51.19% 0.00% 20.82% 0.68004227s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.82405281s ########## END ITERATION NO. 19 ########## Tue Jan 17 09:50:14 2012 It. 19 -148.2647730663 1.65D-12 -1.54D-09 8.57D-09 DAMP0.25 0.82405281s LL SL Tue Jan 17 ########## START ITERATION NO. 20 ########## Tue Jan 17 09:50:15 2012 20 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.10% 7.01% 0.00% 0.14% 0.07600498s SOfock:SL 1.00D-12 3.98% 51.52% 0.00% 21.28% 0.66804314s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.80404949s ########## END ITERATION NO. 20 ########## Tue Jan 17 09:50:15 2012 It. 20 -148.2647730663 1.59D-12 -1.35D-09 7.39D-09 DAMP0.25 0.80404949s LL SL Tue Jan 17 ########## START ITERATION NO. 21 ########## Tue Jan 17 09:50:16 2012 21 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 7.68% 0.00% 0.43% 0.08000565s SOfock:SL 1.00D-12 5.22% 51.44% 0.00% 22.41% 0.67204094s cp DFCOEF DFCOEF.BEST >>> Total wall time: 0.00000000s >>> Total CPU-time : 0.81604958s ########## END ITERATION NO. 21 ########## Tue Jan 17 09:50:16 2012 It. 21 -148.2647730663 1.71D-13 -1.16D-09 6.37D-09 DAMP0.25 0.81604958s LL SL Tue Jan 17 ########## START ITERATION NO. 22 ########## Tue Jan 17 09:50:16 2012 22 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 8.37% 0.00% 0.50% 0.08000374s SOfock:SL 1.00D-12 6.14% 52.22% 0.00% 23.16% 0.66004181s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.80005074s ########## END ITERATION NO. 22 ########## Tue Jan 17 09:50:16 2012 It. 22 -148.2647730663 2.73D-12 -1.01D-09 5.50D-09 DAMP0.25 0.80005074s LL SL Tue Jan 17 ########## START ITERATION NO. 23 ########## Tue Jan 17 09:50:17 2012 23 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 8.99% 0.00% 0.76% 0.08000565s SOfock:SL 1.00D-12 6.23% 52.29% 0.00% 24.99% 0.67204094s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.80805206s ########## END ITERATION NO. 23 ########## Tue Jan 17 09:50:17 2012 It. 23 -148.2647730663 2.84D-13 -8.67D-10 4.75D-09 DAMP0.25 0.80805206s LL SL Tue Jan 17 ########## START ITERATION NO. 24 ########## Tue Jan 17 09:50:18 2012 24 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.32% 9.69% 0.00% 0.70% 0.07600594s SOfock:SL 1.00D-12 6.72% 53.85% 0.00% 25.45% 0.65204048s DIIS aborted because of the last two iterations the lowest energy has the largest gradient and DIIS minimizes gradient !!! >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.79604912s ########## END ITERATION NO. 24 ########## Tue Jan 17 09:50:18 2012 It. 24 -148.2647730663 -5.68D-14 -7.50D-10 4.10D-09 DAMP0.25 0.79604912s LL SL Tue Jan 17 ########## START ITERATION NO. 25 ########## Tue Jan 17 09:50:19 2012 25 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.22% 10.36% 0.00% 0.68% 0.08000374s SOfock:SL 1.00D-12 7.31% 54.29% 0.00% 26.29% 0.65204048s cp DFCOEF DFCOEF.BEST >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.78804779s ########## END ITERATION NO. 25 ########## Tue Jan 17 09:50:19 2012 It. 25 -148.2647730663 1.65D-12 -6.48D-10 3.54D-09 DAMP0.25 0.78804779s LL SL Tue Jan 17 ########## START ITERATION NO. 26 ########## Tue Jan 17 09:50:20 2012 26 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.22% 11.03% 0.00% 0.84% 0.08000565s SOfock:SL 1.00D-12 9.43% 54.17% 0.00% 27.31% 0.65604019s >>> Total wall time: 0.00000000s >>> Total CPU-time : 0.80005074s ########## END ITERATION NO. 26 ########## Tue Jan 17 09:50:20 2012 It. 26 -148.2647730663 -3.01D-12 -5.58D-10 3.06D-09 DAMP0.25 0.80005074s LL SL Tue Jan 17 ########## START ITERATION NO. 27 ########## Tue Jan 17 09:50:20 2012 27 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.22% 11.89% 0.00% 1.05% 0.08000374s SOfock:SL 1.00D-12 11.54% 52.06% 0.00% 29.39% 0.64004135s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.77604866s ########## END ITERATION NO. 27 ########## Tue Jan 17 09:50:20 2012 It. 27 -148.2647730663 0.00D+00 -4.84D-10 2.64D-09 DAMP0.25 0.77604866s LL SL Tue Jan 17 ########## START ITERATION NO. 28 ########## Tue Jan 17 09:50:21 2012 28 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.22% 12.95% 0.00% 1.68% 0.08000565s SOfock:SL 1.00D-12 11.21% 53.34% 0.00% 29.63% 0.65204048s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.79204941s ########## END ITERATION NO. 28 ########## Tue Jan 17 09:50:21 2012 It. 28 -148.2647730663 1.48D-12 -4.17D-10 2.28D-09 DAMP0.25 0.79204941s LL SL Tue Jan 17 ########## START ITERATION NO. 29 ########## Tue Jan 17 09:50:22 2012 29 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 3.75% 13.40% 0.00% 1.82% 0.07600403s SOfock:SL 1.00D-12 12.01% 54.20% 0.00% 29.47% 0.64004135s DIIS aborted because of the last two iterations the lowest energy has the largest gradient and DIIS minimizes gradient !!! >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.77605057s ########## END ITERATION NO. 29 ########## Tue Jan 17 09:50:22 2012 It. 29 -148.2647730663 -1.82D-12 -3.62D-10 1.97D-09 DAMP0.25 0.77605057s LL SL Tue Jan 17 ########## START ITERATION NO. 30 ########## Tue Jan 17 09:50:23 2012 30 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 4.26% 14.70% 0.00% 1.95% 0.08000374s SOfock:SL 1.00D-12 12.67% 54.22% 0.00% 30.78% 0.64404106s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.78804588s ########## END ITERATION NO. 30 ########## Tue Jan 17 09:50:23 2012 It. 30 -148.2647730663 -1.14D-13 -3.10D-10 1.70D-09 DAMP0.25 0.78804588s LL SL Tue Jan 17 ########## START ITERATION NO. 31 ########## Tue Jan 17 09:50:24 2012 31 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 3.65% 15.11% 0.00% 2.01% 0.07600403s SOfock:SL 1.00D-12 12.20% 56.17% 0.00% 30.29% 0.64804077s >>> Total wall time: 0.00000000s >>> Total CPU-time : 0.78805161s ########## END ITERATION NO. 31 ########## Tue Jan 17 09:50:24 2012 It. 31 -148.2647730663 -2.84D-13 -2.70D-10 1.47D-09 DAMP0.25 0.78805161s LL SL Tue Jan 17 ########## START ITERATION NO. 32 ########## Tue Jan 17 09:50:24 2012 32 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 4.36% 16.86% 0.00% 2.07% 0.07600594s SOfock:SL 1.00D-12 14.21% 55.93% 0.00% 30.73% 0.62803841s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.76404572s ########## END ITERATION NO. 32 ########## Tue Jan 17 09:50:24 2012 It. 32 -148.2647730663 4.55D-13 -2.31D-10 1.27D-09 DAMP0.25 0.76404572s LL SL Tue Jan 17 ########## START ITERATION NO. 33 ########## Tue Jan 17 09:50:25 2012 33 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 4.87% 16.95% 0.05% 2.64% 0.08000565s SOfock:SL 1.00D-12 14.20% 56.62% 0.00% 30.92% 0.64403915s DIIS aborted because of the last two iterations the lowest energy has the largest gradient and DIIS minimizes gradient !!! >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.78005028s ########## END ITERATION NO. 33 ########## Tue Jan 17 09:50:25 2012 It. 33 -148.2647730663 -1.14D-13 -2.01D-10 1.10D-09 DAMP0.25 0.78005028s LL SL Tue Jan 17 ########## START ITERATION NO. 34 ########## Tue Jan 17 09:50:26 2012 34 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 4.97% 18.97% 0.21% 3.07% 0.07600594s SOfock:SL 1.00D-12 16.20% 55.93% 0.00% 31.55% 0.62003899s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.75604630s ########## END ITERATION NO. 34 ########## Tue Jan 17 09:50:26 2012 It. 34 -148.2647730663 -1.14D-12 -1.71D-10 9.50D-10 DAMP0.25 0.75604630s LL SL Tue Jan 17 ########## START ITERATION NO. 35 ########## Tue Jan 17 09:50:27 2012 35 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 5.71% 20.27% 0.21% 3.38% 0.07600594s SOfock:SL 1.00D-12 16.21% 58.00% 0.00% 30.62% 0.60803795s >>> Total wall time: 0.00000000s >>> Total CPU-time : 0.74404907s ########## END ITERATION NO. 35 ########## Tue Jan 17 09:50:27 2012 It. 35 -148.2647730663 2.05D-12 -1.50D-10 8.23D-10 DAMP0.25 0.74404907s LL SL Tue Jan 17 ########## START ITERATION NO. 36 ########## Tue Jan 17 09:50:27 2012 36 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 4.87% 19.38% 0.25% 3.44% 0.08000374s SOfock:SL 1.00D-12 16.21% 57.24% 0.00% 31.66% 0.62804031s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.76804733s ########## END ITERATION NO. 36 ########## Tue Jan 17 09:50:27 2012 It. 36 -148.2647730663 -5.68D-14 -1.31D-10 7.10D-10 DAMP0.25 0.76804733s LL SL Tue Jan 17 ########## START ITERATION NO. 37 ########## Tue Jan 17 09:50:28 2012 37 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 5.71% 23.17% 0.42% 3.29% 0.07600594s SOfock:SL 1.00D-12 18.05% 58.29% 0.00% 30.61% 0.59603691s DIIS aborted because of the last two iterations the lowest energy has the largest gradient and DIIS minimizes gradient !!! >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.73204422s ########## END ITERATION NO. 37 ########## Tue Jan 17 09:50:28 2012 It. 37 -148.2647730663 -1.71D-13 -1.10D-10 6.15D-10 DAMP0.25 0.73204422s LL SL Tue Jan 17 ########## START ITERATION NO. 38 ########## Tue Jan 17 09:50:29 2012 38 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 4.87% 22.57% 0.57% 3.21% 0.07600403s SOfock:SL 1.00D-12 20.68% 56.70% 0.00% 31.00% 0.61203957s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.74804688s ########## END ITERATION NO. 38 ########## Tue Jan 17 09:50:29 2012 It. 38 -148.2647730663 1.14D-13 -9.66D-11 5.29D-10 DAMP0.25 0.74804688s LL SL Tue Jan 17 ########## START ITERATION NO. 39 ########## Tue Jan 17 09:50:30 2012 39 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 4.87% 23.68% 0.74% 3.32% 0.12800789s SOfock:SL 1.00D-12 19.99% 58.01% 0.00% 30.53% 0.62404060s >>> Total wall time: 0.00000000s >>> Total CPU-time : 0.80805206s ########## END ITERATION NO. 39 ########## Tue Jan 17 09:50:30 2012 It. 39 -148.2647730663 -1.82D-12 -8.28D-11 4.58D-10 DAMP0.25 0.80805206s LL SL Tue Jan 17 ########## START ITERATION NO. 40 ########## Tue Jan 17 09:50:30 2012 40 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 5.71% 26.82% 0.81% 3.38% 0.07600403s SOfock:SL 1.00D-12 22.31% 58.40% 0.00% 29.96% 0.57603645s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.71604347s ########## END ITERATION NO. 40 ########## Tue Jan 17 09:50:30 2012 It. 40 -148.2647730663 2.56D-12 -7.04D-11 3.99D-10 DAMP0.25 0.71604347s LL SL Tue Jan 17 ########## START ITERATION NO. 41 ########## Tue Jan 17 09:50:31 2012 41 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 4.87% 25.73% 0.74% 3.38% 0.08000374s SOfock:SL 1.00D-12 22.23% 58.65% 0.00% 29.98% 0.60003853s DIIS aborted because of the last two iterations the lowest energy has the largest gradient and DIIS minimizes gradient !!! >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.73604584s ########## END ITERATION NO. 41 ########## Tue Jan 17 09:50:31 2012 It. 41 -148.2647730663 -5.68D-14 -6.15D-11 3.44D-10 DAMP0.25 0.73604584s LL SL Tue Jan 17 ########## START ITERATION NO. 42 ########## Tue Jan 17 09:50:32 2012 42 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 5.26% 29.03% 0.90% 3.53% 0.07600784s SOfock:SL 1.00D-12 22.74% 60.32% 0.00% 29.01% 0.58003616s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.71604538s ########## END ITERATION NO. 42 ########## Tue Jan 17 09:50:32 2012 It. 42 -148.2647730663 -9.09D-13 -5.22D-11 2.99D-10 DAMP0.25 0.71604538s LL SL Tue Jan 17 ########## START ITERATION NO. 43 ########## Tue Jan 17 09:50:33 2012 43 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 4.97% 30.21% 1.13% 3.99% 0.07600403s SOfock:SL 1.00D-12 26.93% 57.60% 0.00% 29.62% 0.56803894s >>> Total wall time: 0.00000000s >>> Total CPU-time : 0.70804596s ########## END ITERATION NO. 43 ########## Tue Jan 17 09:50:33 2012 It. 43 -148.2647730663 -3.41D-13 -5.80D-11 2.61D-10 DAMP0.25 0.70804596s LL SL Tue Jan 17 ########## START ITERATION NO. 44 ########## Tue Jan 17 09:50:33 2012 44 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 3.65% 30.57% 1.13% 4.09% 0.08000565s SOfock:SL 1.00D-12 24.73% 60.15% 0.00% 28.99% 0.58803558s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.72404480s ########## END ITERATION NO. 44 ########## Tue Jan 17 09:50:33 2012 It. 44 -148.2647730663 -4.55D-13 -4.00D-11 2.29D-10 DAMP0.25 0.72404480s LL SL Tue Jan 17 ########## START ITERATION NO. 45 ########## Tue Jan 17 09:50:34 2012 45 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 6.45% 33.43% 1.17% 4.17% 0.07600403s SOfock:SL 1.00D-12 29.01% 57.82% 0.00% 29.38% 0.56003571s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.70004272s ########## END ITERATION NO. 45 ########## Tue Jan 17 09:50:34 2012 It. 45 -148.2647730663 1.02D-12 -3.39D-11 1.98D-10 DAMP0.25 0.70004272s LL SL Tue Jan 17 ########## START ITERATION NO. 46 ########## Tue Jan 17 09:50:35 2012 46 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 6.43% 34.19% 1.24% 4.31% 0.08000565s SOfock:SL 1.00D-12 33.63% 53.80% 0.00% 30.28% 0.53203583s >>> Total wall time: 0.00000000s >>> Total CPU-time : 0.67204285s ########## END ITERATION NO. 46 ########## Tue Jan 17 09:50:35 2012 It. 46 -148.2647730663 3.41D-13 -2.97D-11 1.75D-10 DAMP0.25 0.67204285s LL SL Tue Jan 17 ########## START ITERATION NO. 47 ########## Tue Jan 17 09:50:35 2012 47 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 8.04% 36.81% 1.38% 4.40% 0.07600784s SOfock:SL 1.00D-12 40.04% 48.49% 0.00% 30.63% 0.46802902s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.60403442s ########## END ITERATION NO. 47 ########## Tue Jan 17 09:50:35 2012 It. 47 -148.2647730663 2.05D-12 3.13D-11 1.55D-10 DAMP0.25 0.60403442s LL SL Tue Jan 17 ########## START ITERATION NO. 48 ########## Tue Jan 17 09:50:36 2012 48 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 5.91% 36.10% 1.70% 4.62% 0.08000565s SOfock:SL 1.00D-12 34.39% 54.34% 0.00% 29.89% 0.54803467s DIIS aborted because of the last two iterations the lowest energy has the largest gradient and DIIS minimizes gradient !!! >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.68804550s ########## END ITERATION NO. 48 ########## Tue Jan 17 09:50:36 2012 It. 48 -148.2647730663 -1.42D-12 2.08D-11 1.32D-10 DAMP0.25 0.68804550s LL SL Tue Jan 17 ########## START ITERATION NO. 49 ########## Tue Jan 17 09:50:37 2012 49 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 10.63% 38.06% 1.89% 4.68% 0.07600784s SOfock:SL 1.00D-12 43.84% 46.52% 0.00% 29.95% 0.48003006s >>> Total wall time: 0.00000000s >>> Total CPU-time : 0.61603928s ########## END ITERATION NO. 49 ########## Tue Jan 17 09:50:37 2012 It. 49 -148.2647730663 -6.25D-13 -6.19D-11 1.22D-10 DAMP0.25 0.61603928s LL SL Tue Jan 17 ########## START ITERATION NO. 50 ########## Tue Jan 17 09:50:37 2012 50 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 7.99% 38.20% 2.03% 4.66% 0.08000565s SOfock:SL 1.00D-12 40.64% 49.31% 0.00% 30.09% 0.50802994s >>> Total wall time: 1.00000000s >>> Total CPU-time : 0.64803696s ########## END ITERATION NO. 50 ########## Tue Jan 17 09:50:37 2012 It. 50 -148.2647730663 -1.59D-12 3.64D-11 1.05D-10 DAMP0.25 0.64803696s LL SL Tue Jan 17 ** Exit SCF because maximum number of iterations reached. SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-10 Allowed convergence:1.000D-09 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -54.04463176315 1.00D+20 0.00D+00 0.00D+00 0.05200300s Scr. nuclei Tue Jan 17 It. 2 -148.1757861222 9.41D+01 -2.11D+00 7.48D-01 0.91205706s LL SL Tue Jan 17 It. 3 -148.2625353604 8.67D-02 1.50D-01 1.01D-01 DIIS 2 0.85205293s LL SL Tue Jan 17 It. 4 -148.2646767668 2.14D-03 -2.37D-02 1.99D-02 DIIS 3 0.85205388s LL SL Tue Jan 17 It. 5 -148.2647707820 9.40D-05 2.62D-03 2.42D-03 DIIS 4 0.84805298s LL SL Tue Jan 17 It. 6 -148.2647725262 1.74D-06 -2.14D-04 5.25D-04 DIIS 5 0.90405607s LL SL Tue Jan 17 It. 7 -148.2647727424 2.16D-07 -9.16D-05 3.29D-04 DIIS 6 0.85605335s LL SL Tue Jan 17 It. 8 -148.2647729139 1.71D-07 -1.17D-04 2.23D-04 DIIS 7 0.85205364s LL SL Tue Jan 17 It. 9 -148.2647730624 1.49D-07 -2.17D-04 3.98D-05 DIIS 8 0.84805298s LL SL Tue Jan 17 It. 10 -148.2647730663 3.82D-09 -3.93D-05 1.40D-06 DIIS 9 0.84805298s LL SL Tue Jan 17 It. 11 -148.2647730663 1.71D-12 -4.31D-07 4.10D-07 DIIS 9 0.84805298s LL SL Tue Jan 17 It. 12 -148.2647730663 -3.98D-13 -1.13D-07 8.19D-08 DAMP0.25 0.84405327s LL SL Tue Jan 17 It. 13 -148.2647730663 8.53D-13 1.93D-08 7.86D-08 DAMP0.25 0.83605194s LL SL Tue Jan 17 It. 14 -148.2647730663 -7.39D-13 1.16D-08 4.20D-08 DIIS 2 0.83605194s LL SL Tue Jan 17 It. 15 -148.2647730663 1.31D-12 -1.48D-08 1.66D-08 DIIS 2 0.84005165s LL SL Tue Jan 17 It. 16 -148.2647730663 6.82D-13 -4.04D-09 1.33D-08 DAMP0.25 0.83605385s LL SL Tue Jan 17 It. 17 -148.2647730663 -8.53D-13 -1.70D-09 1.16D-08 DAMP0.25 0.83205128s LL SL Tue Jan 17 It. 18 -148.2647730663 1.31D-12 -1.90D-09 9.93D-09 DAMP0.25 0.85205269s LL SL Tue Jan 17 It. 19 -148.2647730663 1.65D-12 -1.54D-09 8.57D-09 DAMP0.25 0.82405281s LL SL Tue Jan 17 It. 20 -148.2647730663 1.59D-12 -1.35D-09 7.39D-09 DAMP0.25 0.80404949s LL SL Tue Jan 17 It. 21 -148.2647730663 1.71D-13 -1.16D-09 6.37D-09 DAMP0.25 0.81604958s LL SL Tue Jan 17 It. 22 -148.2647730663 2.73D-12 -1.01D-09 5.50D-09 DAMP0.25 0.80005074s LL SL Tue Jan 17 It. 23 -148.2647730663 2.84D-13 -8.67D-10 4.75D-09 DAMP0.25 0.80805206s LL SL Tue Jan 17 It. 24 -148.2647730663 -5.68D-14 -7.50D-10 4.10D-09 DAMP0.25 0.79604912s LL SL Tue Jan 17 It. 25 -148.2647730663 1.65D-12 -6.48D-10 3.54D-09 DAMP0.25 0.78804779s LL SL Tue Jan 17 It. 26 -148.2647730663 -3.01D-12 -5.58D-10 3.06D-09 DAMP0.25 0.80005074s LL SL Tue Jan 17 It. 27 -148.2647730663 0.00D+00 -4.84D-10 2.64D-09 DAMP0.25 0.77604866s LL SL Tue Jan 17 It. 28 -148.2647730663 1.48D-12 -4.17D-10 2.28D-09 DAMP0.25 0.79204941s LL SL Tue Jan 17 It. 29 -148.2647730663 -1.82D-12 -3.62D-10 1.97D-09 DAMP0.25 0.77605057s LL SL Tue Jan 17 It. 30 -148.2647730663 -1.14D-13 -3.10D-10 1.70D-09 DAMP0.25 0.78804588s LL SL Tue Jan 17 It. 31 -148.2647730663 -2.84D-13 -2.70D-10 1.47D-09 DAMP0.25 0.78805161s LL SL Tue Jan 17 It. 32 -148.2647730663 4.55D-13 -2.31D-10 1.27D-09 DAMP0.25 0.76404572s LL SL Tue Jan 17 It. 33 -148.2647730663 -1.14D-13 -2.01D-10 1.10D-09 DAMP0.25 0.78005028s LL SL Tue Jan 17 It. 34 -148.2647730663 -1.14D-12 -1.71D-10 9.50D-10 DAMP0.25 0.75604630s LL SL Tue Jan 17 It. 35 -148.2647730663 2.05D-12 -1.50D-10 8.23D-10 DAMP0.25 0.74404907s LL SL Tue Jan 17 It. 36 -148.2647730663 -5.68D-14 -1.31D-10 7.10D-10 DAMP0.25 0.76804733s LL SL Tue Jan 17 It. 37 -148.2647730663 -1.71D-13 -1.10D-10 6.15D-10 DAMP0.25 0.73204422s LL SL Tue Jan 17 It. 38 -148.2647730663 1.14D-13 -9.66D-11 5.29D-10 DAMP0.25 0.74804688s LL SL Tue Jan 17 It. 39 -148.2647730663 -1.82D-12 -8.28D-11 4.58D-10 DAMP0.25 0.80805206s LL SL Tue Jan 17 It. 40 -148.2647730663 2.56D-12 -7.04D-11 3.99D-10 DAMP0.25 0.71604347s LL SL Tue Jan 17 It. 41 -148.2647730663 -5.68D-14 -6.15D-11 3.44D-10 DAMP0.25 0.73604584s LL SL Tue Jan 17 It. 42 -148.2647730663 -9.09D-13 -5.22D-11 2.99D-10 DAMP0.25 0.71604538s LL SL Tue Jan 17 It. 43 -148.2647730663 -3.41D-13 -5.80D-11 2.61D-10 DAMP0.25 0.70804596s LL SL Tue Jan 17 It. 44 -148.2647730663 -4.55D-13 -4.00D-11 2.29D-10 DAMP0.25 0.72404480s LL SL Tue Jan 17 It. 45 -148.2647730663 1.02D-12 -3.39D-11 1.98D-10 DAMP0.25 0.70004272s LL SL Tue Jan 17 It. 46 -148.2647730663 3.41D-13 -2.97D-11 1.75D-10 DAMP0.25 0.67204285s LL SL Tue Jan 17 It. 47 -148.2647730663 2.05D-12 3.13D-11 1.55D-10 DAMP0.25 0.60403442s LL SL Tue Jan 17 It. 48 -148.2647730663 -1.42D-12 2.08D-11 1.32D-10 DAMP0.25 0.68804550s LL SL Tue Jan 17 It. 49 -148.2647730663 -6.25D-13 -6.19D-11 1.22D-10 DAMP0.25 0.61603928s LL SL Tue Jan 17 It. 50 -148.2647730663 -1.59D-12 3.64D-11 1.05D-10 DAMP0.25 0.64803696s LL SL Tue Jan 17 -------------------------------------------------------------------------------------------------------------------------------- * Desired convergence limit not reached after 50 iterations but the current convergence is acceptable. * Average elapsed time per iteration: No 2-ints : 0.00000000s LL SL : 0.79591837s TOTAL ENERGY ------------ Electronic energy : -176.31179791712552 Other contributions to the total energy Nuclear repulsion energy : 28.04702309791971 SS Coulombic correction : 0.00000175293894 Sum of all contributions to the energy Total energy : -148.26477306626686 Eigenvalues ----------- * Block 1 in E1g: Omega = 1/2 * Closed shell, f = 1.0000 -21.93257700958187 ( 2) -2.67834041402380 ( 2) -1.71649407802840 ( 2) * Virtual eigenvalues, f = 0.0000 -0.93094695127942 ( 2) 0.34135116763502 ( 2) 0.41853812248332 ( 2) 0.44543008889895 ( 2) 2.19018237589321 ( 2) 2.70668104799687 ( 2) * Block 2 in E1g: Omega = 3/2 * Virtual eigenvalues, f = 0.0000 -0.92994394819356 ( 2) 0.41936269275385 ( 2) 1.70856193708917 ( 2) 2.70682418683831 ( 2) * Block 3 in E1g: Omega = 5/2 * Virtual eigenvalues, f = 0.0000 1.70879201593198 ( 2) * Block 1 in E1u: Omega = 1/2 * Closed shell, f = 1.0000 -21.93110704973921 ( 2) -2.05566798426770 ( 2) -1.61971971342614 ( 2) * Virtual eigenvalues, f = 0.0000 -0.48085205754520 ( 2) 0.25689792959377 ( 2) 0.26353876915630 ( 2) 1.11374364055640 ( 2) 1.43151803870282 ( 2) 3.23664329989648 ( 2) * Block 2 in E1u: Omega = 3/2 * Closed shell, f = 1.0000 -1.61883843412455 ( 2) * Virtual eigenvalues, f = 0.0000 0.26432206818584 ( 2) 1.43165162987414 ( 2) 2.04467149766146 ( 2) * Block 3 in E1u: Omega = 5/2 * Virtual eigenvalues, f = 0.0000 2.04492303240841 ( 2) * Occupation in fermion symmetry E1g * Inactive orbitals 1/2 1/2 1/2 * Virtual orbitals 1/2 3/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2 1/2 3/2 * Occupation in fermion symmetry E1u * Inactive orbitals 1/2 1/2 1/2 3/2 * Virtual orbitals 1/2 1/2 1/2 3/2 1/2 1/2 3/2 3/2 5/2 1/2 * Occupation of subblocks E1g: 1/2 3/2 5/2 closed shells (f=1.0000): 3 0 0 virtual shells (f=0.0000): 6 4 1 tot.num. of pos.erg shells: 9 4 1 E1u: 1/2 3/2 5/2 closed shells (f=1.0000): 3 1 0 virtual shells (f=0.0000): 6 3 1 tot.num. of pos.erg shells: 9 4 1 * HOMO - LUMO gap: E(LUMO) : -0.93094695 au (symmetry E1g) - E(HOMO) : -1.61883843 au (symmetry E1u) ------------------------------------------ gap : 0.68789148 au ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ************************************************************************ **************** Transformation of 2-electron integrals **************** ************************************************************************ Transformation started at : Tue Jan 17 09:50:38 2012 * REACMO: Coefficients read from file DFCOEF - Total energy: -148.264773066266855 * Heading :Moelcular oxygen. Ground and excited states (X, a,Tue Jan 17 09:50:38 2012 Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. * Orbital ranges for 4-index transformation: * Fermion ircop E1g Index 1 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 2 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 3 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 4 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 * Fermion ircop E1u Index 1 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 2 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 3 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 4 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 * Core orbital ranges for 2-index transformation: * Fermion ircop E1g Index 1 1 orbitals 1 * Fermion ircop E1u Index 1 1 orbitals 1 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ******************************************************************** **************** Transformation of core Fock matrix **************** ******************************************************************** Transformation started at : Tue Jan 17 09:50:38 2012 * REACMO: Coefficients read from file DFCOEF - Total energy: -148.264773066266855 * Heading :Moelcular oxygen. Ground and excited states (X, a,Tue Jan 17 09:50:38 2012 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.08000565s SOfock:SL 1.00D-12 0.00% 4.82% 0.00% 0.00% 0.70004272s * REAFCK: Fock matrix read from file DFFCK1 * Heading :Moelcular oxygen. Ground and excited states (X, a,Tue Jan 17 09:49:59 2012 Core energy (includes nuclear repulsion) : -102.5326352845 - Electronic part : -130.5796601354 - One-electron terms : -141.8225508754 - Two-electron terms : 11.2428907400 MOLFDIR file MRCONEE is written - Integral class 1 : (LL|??) - Beginning task 1 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 2 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 3 of 3 after 0. seconds and 0. CPU-seconds - Integral class 2 : (SS|??) - Beginning task 4 of 8 after 1. seconds and 1. CPU-seconds - Beginning task 5 of 8 after 1. seconds and 1. CPU-seconds - Beginning task 6 of 8 after 1. seconds and 1. CPU-seconds - Beginning task 7 of 8 after 1. seconds and 1. CPU-seconds - Beginning task 8 of 8 after 2. seconds and 2. CPU-seconds Node 0 finished first half transformation 2544485 HT integrals written ( 76.97%, 0.04 GB) <<< Starting 2HT on node 0 >>> Finished 2HT on node 0 >>> Time used in 2HT_all is 4.88 seconds - Binary file MDCINT was written. * Screening statistics: (LL|LL)ints : 0.00% (SS|LL)ints : 0.00% Total : 0.00% ------ Timing report (in CPU seconds) of module integral transformation Time in First halftransformati 4.652 seconds Time in Second halftransformat 4.876 seconds Total wall time used in PAMTRA : 00:00:13 Total CPU time used in PAMTRA (master only) : 00:00:11 Transformation ended at : Tue Jan 17 09:50:51 2012 ---< Process 1 of 1----< Relativistic Coupled Cluster program RELCCSD Written by : Lucas Visscher NASA Ames Research Center (1994) Rijks Universiteit Groningen (1995) Odense Universitet (1996-1997) VU University Amsterdam (1998-present) This module is documented in - Initial implementation : L. Visscher, T.J. Lee and K.G. Dyall, J. Chem. Phys. 105 (1996) 8769. - Fock Space (FSCC): L. Visscher, E. Eliav and U. Kaldor, J. Chem. Phys. 115 (2002) 9720. - Intermediate Hamiltonian E. Eliav, M. J. Vilkas, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 122 (2005) 224113. - Parallelization : M. Pernpointner and L. Visscher, J. Comp. Chem. 24 (2003) 754. Today is : 17 Jan 12 The time is : 09:50:51 Initializing word-addressable I/O : the FORTRAN-interface is used with 16 KB records EHMIN: 1000.00000 EHMAX: 100.00000 EPMIN: -1.00000 EPMAX: -1000.00000 Total memory available has not been determined Configuration in highest pointgroup Eg Eg Eu Eu Spinor class : occupied 2 2 3 3 Spinor class : virtual 11 11 10 10 Configuration in abelian subgroup 1g -1g 3g -3g 5g -5g 1u -1u Spinor class : occupied 2 2 0 0 0 0 2 2 Spinor class : virtual 6 6 4 4 1 1 6 6 Configuration in abelian subgroup 3u -3u 5u -5u Spinor class : occupied 1 1 0 0 Spinor class : virtual 3 3 1 1 Number of electrons : 10 Number of virtual spinors : 42 Complex arithmetic mode : F Do integral sorting : F Do energy calculation : F Do gradient calculation : F Do response calculation : F Debug information : F Timing information : F Print level : 0 Memory limit (MWord) not set in Dirac but by the OS Interface used : DIRAC6 Memory for reading and sorting integrals : 302951 8-byte words Memory for reading and sorting integrals : 2605511 8-byte words debug, kind buf3 : 8 Core used for Fock space CCSD energies : 0 8-byte words Memory used for active modules : 0 8-byte words Fock space CCSD Energy calculations Module written by Ephraim Eliav & Luuk Visscher, July 1999 List of inactive and active spinors (Fock space) Configuration in highest pointgroup Eg Eg Eu Eu Spinor class : inactive occupied 2 2 3 3 Spinor class : active occupied 0 0 0 0 Spinor class : active virtual 2 2 0 0 Spinor class : inactive virtual 9 9 10 10 Configuration in abelian subgroup 1g -1g 3g -3g 5g -5g 1u -1u Spinor class : inactive occupied 2 2 0 0 0 0 2 2 Spinor class : active occupied 0 0 0 0 0 0 0 0 Spinor class : active virtual 1 1 1 1 0 0 0 0 Spinor class : inactive virtual 5 5 3 3 1 1 6 6 Configuration in abelian subgroup 3u -3u 5u -5u Spinor class : inactive occupied 1 1 0 0 Spinor class : active occupied 0 0 0 0 Spinor class : active virtual 0 0 0 0 Spinor class : inactive virtual 3 3 1 1 Expanding and sorting integrals to unique types : Type OOOO : 927 integrals Type VOOO : 5318 integrals Type VVOO : 7277 integrals Type VOVO : 31436 integrals Type VOVV : 43332 integrals Type VVVV : 60233 integrals Sorting of first 4 classes done. Need 1 passes to sort VOVV integrals VOVV sorting done. Need 1 passes to sort VVVV integrals VVVV sorting done. Reading Coulomb integrals : File date : 17Jan12 File time : 09:50:43 # of integrals 303440 Finished sorting of integrals Checking the orbital energies, the program computes the diagonal elements of the reconstructed Fock matrix. Differences with the reference orbital energies are given if above a treshold or if iprnt > 1 Spinor Abelian Rep. Energy Recalc. Energy The original energies (left column) are used in perturbation expressions. Use the perturbative values (MP2, CCSD[T]/(T)/-T) with care, especially in open shell calculations because the orbitals need not always be semi-canonical as was assumed in the derivation of the expressions. The missing terms may be important ! Nuclear repulsion + core energy : -102.532635284539552 Zero order electronic energy : -19.378121247687162 First order electronic energy : -26.354016534035612 Electronic energy : -45.732137781722770 SCF energy : -148.264773066262308 debug, kind buf3 : 8 Fock space CCSD options : Maximum number of iterations : 100 Maximum size of DIIS space : 8 Convergence criterium : 0.1E-11 Solving equations for sector 00 ...maximum number of iterations for this sector:100 CCSD results SCF energy : -148.264773066262308 CCSD correlation energy : -0.469686273630243 Total CCSD energy : -148.734459339892538 T1 diagnostic : 0.027311455007540 Convergence : 0.000000000000456 Number or iterations used : 25 Analysis of eigenvectors of the effective Hamiltonian First line : Energy, Eigenvalue other lines : Coefficients of contributing determinants (above a treshold of .1E+00) Solving equations for sector 01 ...maximum number of iterations for this sector:100 CCSD results T1 diagnostic : 0.027311455007546 Convergence : 0.000000000000820 Number or iterations used : 18 ( 1 au = 27.2113834378 eV / 219474.631280634 cm-1) Energy eigenvalues in atomic units Level Rel eigenvalue Abs eigenvalue Total Energy Degeneracy 1 0.0000000000 -0.900212210558 -149.634671550451 ( 2 * ) 2 0.0008950610 -0.899317149545 -149.633776489438 ( 2 * ) Total average: -149.6342240199 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 1g -1g 3g -3g 5g -5g 7g -7g 1 0.000000000 0.000000 1 1 0 0 0 0 0 0 2 0.024355848 196.443186 0 0 1 1 0 0 0 0 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 9g -9g 11g-11g 13g-13g 15g-15g 1 0.000000000 0.000000 0 0 0 0 0 0 0 0 2 0.024355848 196.443186 0 0 0 0 0 0 0 0 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 1u -1u 3u -3u 5u -5u 7u -7u 1 0.000000000 0.000000 0 0 0 0 0 0 0 0 2 0.024355848 196.443186 0 0 0 0 0 0 0 0 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 9u -9u 11u-11u 13u-13u 15u-15u 1 0.000000000 0.000000 0 0 0 0 0 0 0 0 2 0.024355848 196.443186 0 0 0 0 0 0 0 0 Analysis of eigenvectors of the effective Hamiltonian First line : Energy, Eigenvalue other lines : Coefficients of contributing determinants (above a treshold of .1E+00) Irrep 1g State 1 -149.63467155 -0.90021221 1.00000 | 1g # 1 ( -0.931) | Irrep -1g State 1 -149.63467155 -0.90021221 1.00000 | -1g # 1 ( -0.931) | Irrep 3g State 1 -149.63377649 -0.89931715 1.00000 | 3g # 1 ( -0.930) | Irrep -3g State 1 -149.63377649 -0.89931715 1.00000 | -3g # 1 ( -0.930) | Solving equations for sector 02 ...maximum number of iterations for this sector:100 CCSD results T1 diagnostic : 0.027311455007546 Convergence : 0.000000000000340 Number or iterations used : 13 ( 1 au = 27.2113834378 eV / 219474.631280634 cm-1) Energy eigenvalues in atomic units Level Rel eigenvalue Abs eigenvalue Total Energy Degeneracy 1 0.0000000000 -1.334728626745 -150.069187966638 ( 1 * ) 2 0.0000125384 -1.334716088339 -150.069175428231 ( 2 * ) 3 0.0284204904 -1.306308136298 -150.040767476191 ( 2 * ) 4 0.0528325537 -1.281896073067 -150.016355412959 ( 1 * ) Total average: -150.0509048647 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 0g 2g -2g 4g -4g 6g -6g 8g 1 0.000000000 0.000000 1 0 0 0 0 0 0 0 2 0.000341187 2.751862 0 1 1 0 0 0 0 0 3 0.773360863 6237.576662 0 0 0 1 1 0 0 0 4 1.437646876 11595.405238 1 0 0 0 0 0 0 0 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) -8g 10g-10g 12g-12g 14g-14g 16g 1 0.000000000 0.000000 0 0 0 0 0 0 0 0 2 0.000341187 2.751862 0 0 0 0 0 0 0 0 3 0.773360863 6237.576662 0 0 0 0 0 0 0 0 4 1.437646876 11595.405238 0 0 0 0 0 0 0 0 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 0u 2u -2u 4u -4u 6u -6u 8u 1 0.000000000 0.000000 0 0 0 0 0 0 0 0 2 0.000341187 2.751862 0 0 0 0 0 0 0 0 3 0.773360863 6237.576662 0 0 0 0 0 0 0 0 4 1.437646876 11595.405238 0 0 0 0 0 0 0 0 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) -8u 10u-10u 12u-12u 14u-14u 16u 1 0.000000000 0.000000 0 0 0 0 0 0 0 0 2 0.000341187 2.751862 0 0 0 0 0 0 0 0 3 0.773360863 6237.576662 0 0 0 0 0 0 0 0 4 1.437646876 11595.405238 0 0 0 0 0 0 0 0 Analysis of eigenvectors of the effective Hamiltonian First line : Energy, Eigenvalue other lines : Coefficients of contributing determinants (above a treshold of .1E+00) Irrep 0g State 1 -150.06918797 -1.33472863 -0.71738 | -1g # 1 ( -0.931), 1g # 1 ( -0.931) | -0.69668 | -3g # 1 ( -0.930), 3g # 1 ( -0.930) | Irrep 0g State 2 -150.01635541 -1.28189607 0.69549 | -1g # 1 ( -0.931), 1g # 1 ( -0.931) | -0.71854 | -3g # 1 ( -0.930), 3g # 1 ( -0.930) | Irrep 2g State 1 -150.06917543 -1.33471609 1.00000 | 3g # 1 ( -0.930), -1g # 1 ( -0.931) | Irrep -2g State 1 -150.06917543 -1.33471609 1.00000 | -3g # 1 ( -0.930), 1g # 1 ( -0.931) | Irrep 4g State 1 -150.04076748 -1.30630814 1.00000 | 3g # 1 ( -0.930), 1g # 1 ( -0.931) | Irrep -4g State 1 -150.04076748 -1.30630814 1.00000 | -3g # 1 ( -0.930), -1g # 1 ( -0.931) | -------------------------------------------------------------------------------- Today is : 17 Jan 12 The time is : 09:51:04 Status of the calculations Integral sort # 1 : Completed, restartable Integral sort # 2 : Completed, restartable Fock matrix build : Completed, restartable MP2 energy calculation : Never asked for CCSD energy calculation : Never asked for CCSD(T) energy calculation : Never asked for Overview of calculated energies @ SCF energy : 0.000000000000000 @ MP2 correlation energy : 0.000000000000000 @ CCSD correlation energy : 0.000000000000000 @ 4th order triples correction : 0.000000000000000 @ 5th order triples (T) correction : 0.000000000000000 @ 5th order triples -T correction : 0.000000000000000 @ Total MP2 energy : 0.000000000000000 @ Total CCSD energy : 0.000000000000000 @ Total CCSD+T energy : 0.000000000000000 @ Total CCSD(T) energy : 0.000000000000000 @ Total CCSD-T energy : 0.000000000000000 -------------------------------------------------------------------------------- ------ Timing report (in CPU seconds) of module RELCCSD Time in - T1 equations 0.512 seconds Time in --- T1EQNS HOV*T2(A,C,I 0.020 seconds Time in --- T1EQNS VOOO*TAU 0.036 seconds Time in --- T1EQNS VOVV contrib 0.160 seconds Time in --- T1EQNS VOVO * T(C,K 0.080 seconds Time in - T2 equations 3.076 seconds Time in -- GOINTM 0.036 seconds Time in -- GVINTM 0.164 seconds Time in -- AINTM 0.096 seconds Time in -- HINTM 0.932 seconds Time in --- HINTM: VOVV*T 0.228 seconds Time in --- HINTM: VVOO contrib 0.424 seconds Time in -- T2 EQNS 1.180 seconds Time in --- T2EQNS: TAU*AINTM c 0.024 seconds Time in --- T2EQNS: VOVV*T1 0.172 seconds Time in --- T2EQNS: HINTM*T2 0.740 seconds Time in -- BINTM 0.664 seconds Time in - DIIS extrapolation 0.080 seconds Timing of main modules : Wallclock (s) CPU on master (s) Before CC driver : 52.00 49.24 Initialization : 0.00 0.01 Integral sorting : 0.00 0.00 Energy calculation : 0.00 0.00 First order properties : 0.00 0.00 Second order properties : 0.00 0.00 Fock space energies : 0.00 13.13 Untimed parts : 13.00 0.00 Total time in CC driver : 13. 13.14 Statistics for the word-addressable I/O Number of write calls 8637. Number of read calls 8637. Megabytes written 10.726 Megabytes read 236.762 Seconds spent in reads 0.000 Seconds spent in writes 0.000 average I/O speed for write (Mb/s) 0.000 average I/O speed for read (Mb/s) 0.000 CPU time (seconds) used in RELCCSD: 13.1448 CPU time (seconds) used before RELCCSD: 49.2351 CPU time (seconds) used in total sofar: 62.3799 --- Normal end of RELCCSD Run --- ################################################################################ Date and time (Linux) : Tue Jan 17 09:51:04 2012 Host name : not found >>>> Node 0, utime: 59, stime: 2, minflt: 133425, majflt: 0, nvcsw: 160, nivcsw: 972, maxrss: 0 >>>> Total WALL time used in DIRAC: 1min5s ********** E N D of D I R A C output ********** ***************************************************** Dynamical Memory Usage Summary Mean allocation size (Mb) : 0.19 Largest 10 allocations 488.28 Mb at subroutine for work array at main 18.48 Mb at subroutine for ibuf 18.48 Mb at subroutine for ibuf 1.16 Mb at subroutine for ibuf 0.47 Mb at subroutine for vta 0.47 Mb at subroutine for vt 0.47 Mb at subroutine for vta 0.47 Mb at subroutine for vt 0.47 Mb at subroutine for vta 0.47 Mb at subroutine for vt Peak memory usage (Mb) : 508.00 reached at subroutine : for variable : vta MEMGET high-water mark: 3.99 MB *****************************************************