DIRAC pam run in /u/milias/Work/qch/software/dirac/working_trunk/test/tutorial_projection_analysis DIRAC serial starts by allocating 64000000 words (488 MB) of memory out of the allowed maximum of 2147483648 words (16384 MB) Note: maximum allocatable memory for serial run can be set by pam --aw ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Radovan Bast UiT The Arctic University of Norway * * Trond Saue Universite Toulouse III France * * Lucas Visscher VU University Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer UiT The Arctic University of Norway * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Trygve Helgaker University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak xxx India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema VU University Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen VU University Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC15 (2015), * * written by R. Bast, T. Saue, L. Visscher, and H. J. Aa. Jensen, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, * * Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, * * C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, * * G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, * * R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, * * A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, * * T. Winther, and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* --- Git version information --- Git branch : miro/include_h_modules Last git commit hash : 17b1ac7 Last git commit author : Radovan Bast Last git commit date : Fri Apr 1 17:39:34 2016 +0200 --- Configuration and build info --- Who compiled : milias Compiled on server : lxir073 Operating system : Linux-3.2.0-4-amd64 Python version : 2.7.3 CMake version : 3.5.0 CMake generator : Unix Makefiles CMake build type : debug MPI parallelization : False MPI launcher : unknown 64-bit integers : True Fortran compiler : /cvmfs/it.gsi.de/compiler/intel/15.0/bin/ifort Fortran compiler version : 15.0 Fortran compiler flags : -w -assume byterecl -g -traceback -DVAR_IFORT -i8 -w -assume byterecl -g -traceback -DVAR_IFORT -i8 C compiler : /cvmfs/it.gsi.de/compiler/intel/15.0/bin/icc C compiler version : 15.0 C compiler flags : -g -wd981 -wd279 -wd383 -wd1572 -wd177 -g -wd981 -wd279 -wd383 -wd1572 -wd177 C++ compiler : /cvmfs/it.gsi.de/compiler/intel/15.0/bin/icpc C++ compiler version : 15.0.2 C++ compiler flags : -Wno-unknown-pragmas -Wno-unknown-pragmas Static linking : False Builtin BLAS library : OFF Builtin LAPACK library : OFF Mathematical libraries : -Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.2.164/mkl/lib/intel64/libmkl_lapack95_ilp64.a;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.2.164/mkl/lib/intel64/libmkl_intel_ilp64.so;-openmp;-Wl,--end-group;-Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.2.164/mkl/lib/intel64/libmkl_intel_ilp64.so;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.2.164/mkl/lib/intel64/libmkl_intel_thread.so;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.2.164/mkl/lib/intel64/libmkl_core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/usr/lib/x86_64-linux-gnu/libm.so;-openmp;-Wl,--end-group Explicit libraries : unknown Modules definitions : MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INT_STAR8;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;MOD_QCORR;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ERI;MOD_DNF;MOD_ESR;MOD_KRCC;MOD_SRDFT Configuration time : 2016-04-27 16:51:13.868436 ----------------------------------------------------------------- Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Wed Apr 27 19:11:35 2016 Host name : lxir072 Contents of the input file -------------------------- **DIRAC .ANALYZE **HAMILTONIAN .DFT PBE **WAVE FUNCTION .SCF *SCF .CLOSED SHELL 10 **ANALYZE .PROJEC *PROJEC #.POLREF .ATOMS AFCXXX 1..5 AFHXXX 1 **MOLECULE *BASIS .DEFAULT cc-pVDZ *END OF Contents of the molecule file ----------------------------- 5 C 0.0000000000 0.0000000000 0.0000000000 H 0.6298891440 0.6298891440 -0.6298891440 H 0.6298891440 -0.6298891440 0.6298891440 H -0.6298891440 0.6298891440 0.6298891440 H -0.6298891440 -0.6298891440 -0.6298891440 ************************************************************************* ********************* DIRAC: No title specified !!! ********************* ************************************************************************* Jobs in this run: * Analysis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in four-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals - SL-integrals - SS-integrals - GT-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 The molecule has been centered at center of mass Symmetry point group found: T(d) Rotational Axes --------------- 3 : 0.57735027 -0.57735027 -0.57735027 Isotope 0 3 : -0.57735027 0.57735027 -0.57735027 Isotope 0 3 : -0.57735027 -0.57735027 0.57735027 Isotope 0 3 : 0.57735027 0.57735027 0.57735027 Isotope 0 2 : 0.00000000 0.00000000 1.00000000 Isotope 0 2 : 0.00000000 1.00000000 0.00000000 Isotope 0 2 : -1.00000000 0.00000000 0.00000000 Isotope 0 Improper Rotational Axes ------------------------ 4 : -1.00000000 0.00000000 0.00000000 Isotope 0 4 : 0.00000000 1.00000000 0.00000000 Isotope 0 4 : 0.00000000 0.00000000 1.00000000 Isotope 0 Mirror planes: 2=h, 1=v, 0=other -------------------------------- 1 : -0.70710678 -0.70710678 0.00000000 Isotope 0 1 : 0.00000000 -0.70710678 0.70710678 Isotope 0 1 : 0.70710678 0.00000000 0.70710678 Isotope 0 0 : -0.70710678 0.70710678 0.00000000 Isotope 0 0 : -0.00000000 -0.70710678 -0.70710678 Isotope 0 0 : -0.70710678 0.00000000 0.70710678 Isotope 0 The following elements were found: YZ XZ Symmetry Operations ------------------- Symmetry operations: 2 SYMGRP:Point group information ------------------------------ Full group is: T(d) Represented as: D2 * The point group was generated by: Rotation about the x-axis Rotation about the y-axis * Group multiplication table | E C2z C2y C2x -----+-------------------- E | E C2z C2y C2x C2z | C2z E C2x C2y C2y | C2y C2x E C2z C2x | C2x C2y C2z E * Character table | E C2z C2y C2x -----+-------------------- A | 1 1 1 1 B2 | 1 -1 1 -1 B3 | 1 -1 -1 1 B1 | 1 1 -1 -1 * Direct product table | A B2 B3 B1 -----+-------------------- A | A B2 B3 B1 B2 | B2 A B1 B3 B3 | B3 B1 A B2 B1 | B1 B3 B2 A ************************** *** Output from DBLGRP *** ************************** * One fermion irrep: E1 * Real group. NZ = 1 * Direct product decomposition: E1 x E1 : A + B1 + B2 + B3 Spinor structure ---------------- * Fermion irrep no.: 1 La | A (1) B1 (2) | Sa | A (1) B1 (2) | Lb | B2 (3) B3 (4) | Sb | B2 (3) B3 (4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- A 1 B2 j B3 k B1 i QM-QM nuclear repulsion energy : 13.423074434157 Atoms and basis sets -------------------- Number of atom types : 2 Total number of atoms: 5 label atoms charge prim cont basis ---------------------------------------------------------------------- C 1 6 27 15 L - [9s4p1d|3s2p1d] 68 68 S - [4s10p4d1f|4s10p4d1f] H 4 1 7 5 L - [4s1p|2s1p] 19 19 S - [1s4p1d|1s4p1d] ---------------------------------------------------------------------- 55 35 L - large components 144 144 S - small components ---------------------------------------------------------------------- total: 5 10 199 179 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 2 Elements References -------- ---------- H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994). Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published) Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993). Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). Ga - Kr: A.K. Wilson, D.E. Woon, K.A. Peterson, T.H. Dunning, Jr., J. Chem. Phys., 110, 7667 (1999) Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 15 1 C x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 4 H 1 x 1.1903179769 5 y 1.1903179769 6 z 1.1903179769 7 H 2 x 1.1903179769 8 y -1.1903179769 9 z -1.1903179769 10 H 3 x -1.1903179769 11 y 1.1903179769 12 z -1.1903179769 13 H 4 x -1.1903179769 14 y -1.1903179769 15 z 1.1903179769 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 5 C 0.0000000000 0.0000000000 0.0000000000 H 0.6298891440 0.6298891440 0.6298891440 H 0.6298891440 -0.6298891440 -0.6298891440 H -0.6298891440 0.6298891440 -0.6298891440 H -0.6298891440 -0.6298891440 0.6298891440 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 3 4 4 4 Symmetry 1 1 H x [ 4 + 7 - 10 - 13 ]/4 2 H y [ 5 - 8 + 11 - 14 ]/4 3 H z [ 6 - 9 - 12 + 15 ]/4 Symmetry 2 4 C y 2 5 H x [ 4 - 7 - 10 + 13 ]/4 6 H y [ 5 + 8 + 11 + 14 ]/4 7 H z [ 6 + 9 - 12 - 15 ]/4 Symmetry 3 8 C x 1 9 H x [ 4 + 7 + 10 + 13 ]/4 10 H y [ 5 - 8 - 11 + 14 ]/4 11 H z [ 6 - 9 + 12 - 15 ]/4 Symmetry 4 12 C z 3 13 H x [ 4 - 7 + 10 - 13 ]/4 14 H y [ 5 + 8 - 11 - 14 ]/4 15 H z [ 6 + 9 + 12 + 15 ]/4 Interatomic separations (in Angstroms): --------------------------------------- C H 1 H 2 H 3 H 4 C 0.000000 H 1 1.091000 0.000000 H 2 1.091000 1.781596 0.000000 H 3 1.091000 1.781596 1.781596 0.000000 H 4 1.091000 1.781596 1.781596 1.781596 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: H 1 C 1.091000 bond distance: H 2 C 1.091000 bond distance: H 3 C 1.091000 bond distance: H 4 C 1.091000 Bond angles (degrees): ---------------------- atom 1 atom 2 atom 3 angle ------ ------ ------ ----- bond angle: H 2 C H 1 109.471 bond angle: H 3 C H 1 109.471 bond angle: H 3 C H 2 109.471 bond angle: H 4 C H 1 109.471 bond angle: H 4 C H 2 109.471 bond angle: H 4 C H 3 109.471 Nuclear repulsion energy : 13.423074434157 Hartree GETLAB: AO-labels ----------------- * Large components: 26 1 L C 1 s 2 L C 1 px 3 L C 1 py 4 L C 1 pz 5 L C 1 dxx 6 L C 1 dxy 7 L C 1 dxz 8 L C 1 dyy 9 L C 1 dyz 10 L C 1 dzz 11 L H 1 s 12 L H 2 s 13 L H 3 s 14 L H 4 s 15 L H 1 px 16 L H 1 py 17 L H 1 pz 18 L H 2 px 19 L H 2 py 20 L H 2 pz 21 L H 3 px 22 L H 3 py 23 L H 3 pz 24 L H 4 px 25 L H 4 py 26 L H 4 pz * Small components: 60 27 S C 1 s 28 S C 1 px 29 S C 1 py 30 S C 1 pz 31 S C 1 dxx 32 S C 1 dxy 33 S C 1 dxz 34 S C 1 dyy 35 S C 1 dyz 36 S C 1 dzz 37 S C 1 fxxx 38 S C 1 fxxy 39 S C 1 fxxz 40 S C 1 fxyy 41 S C 1 fxyz 42 S C 1 fxzz 43 S C 1 fyyy 44 S C 1 fyyz 45 S C 1 fyzz 46 S C 1 fzzz 47 S H 1 s 48 S H 2 s 49 S H 3 s 50 S H 4 s 51 S H 1 px 52 S H 1 py 53 S H 1 pz 54 S H 2 px 55 S H 2 py 56 S H 2 pz 57 S H 3 px 58 S H 3 py 59 S H 3 pz 60 S H 4 px 61 S H 4 py 62 S H 4 pz 63 S H 1 dxx 64 S H 1 dxy 65 S H 1 dxz 66 S H 1 dyy 67 S H 1 dyz 68 S H 1 dzz 69 S H 2 dxx 70 S H 2 dxy 71 S H 2 dxz 72 S H 2 dyy 73 S H 2 dyz 74 S H 2 dzz 75 S H 3 dxx 76 S H 3 dxy 77 S H 3 dxz 78 S H 3 dyy 79 S H 3 dyz 80 S H 3 dzz 81 S H 4 dxx 82 S H 4 dxy 83 S H 4 dxz 84 S H 4 dyy 85 S H 4 dyz 86 S H 4 dzz GETLAB: SO-labels ----------------- * Large components: 26 1 L A C s 2 L A C dxx 3 L A C dyy 4 L A C dzz 5 L A H s 6 L A H px 7 L A H py 8 L A H pz 9 L B2 C py 10 L B2 C dxz 11 L B2 H s 12 L B2 H px 13 L B2 H py 14 L B2 H pz 15 L B3 C px 16 L B3 C dyz 17 L B3 H s 18 L B3 H px 19 L B3 H py 20 L B3 H pz 21 L B1 C pz 22 L B1 C dxy 23 L B1 H s 24 L B1 H px 25 L B1 H py 26 L B1 H pz * Small components: 60 27 S A C s 28 S A C dxx 29 S A C dyy 30 S A C dzz 31 S A C fxyz 32 S A H s 33 S A H px 34 S A H py 35 S A H pz 36 S A H dxx 37 S A H dxy 38 S A H dxz 39 S A H dyy 40 S A H dyz 41 S A H dzz 42 S B2 C py 43 S B2 C dxz 44 S B2 C fxxy 45 S B2 C fyyy 46 S B2 C fyzz 47 S B2 H s 48 S B2 H px 49 S B2 H py 50 S B2 H pz 51 S B2 H dxx 52 S B2 H dxy 53 S B2 H dxz 54 S B2 H dyy 55 S B2 H dyz 56 S B2 H dzz 57 S B3 C px 58 S B3 C dyz 59 S B3 C fxxx 60 S B3 C fxyy 61 S B3 C fxzz 62 S B3 H s 63 S B3 H px 64 S B3 H py 65 S B3 H pz 66 S B3 H dxx 67 S B3 H dxy 68 S B3 H dxz 69 S B3 H dyy 70 S B3 H dyz 71 S B3 H dzz 72 S B1 C pz 73 S B1 C dxy 74 S B1 C fxxz 75 S B1 C fyyz 76 S B1 C fzzz 77 S B1 H s 78 S B1 H px 79 S B1 H py 80 S B1 H pz 81 S B1 H dxx 82 S B1 H dxy 83 S B1 H dxz 84 S B1 H dyy 85 S B1 H dyz 86 S B1 H dzz Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 47 44 44 44 Number of large orbitals in each symmetry: 11 8 8 8 Number of small orbitals in each symmetry: 36 36 36 36 * Large component functions Symmetry A ( 1) 3 functions: C s 1 functions: C dxx 1 functions: C dyy 1 functions: C dzz 2 functions: H s 1+2+3+4 1 functions: H px 1+2-3-4 1 functions: H py 1-2+3-4 1 functions: H pz 1-2-3+4 Symmetry B2 ( 2) 2 functions: C py 1 functions: C dxz 2 functions: H s 1-2+3-4 1 functions: H px 1-2-3+4 1 functions: H py 1+2+3+4 1 functions: H pz 1+2-3-4 Symmetry B3 ( 3) 2 functions: C px 1 functions: C dyz 2 functions: H s 1+2-3-4 1 functions: H px 1+2+3+4 1 functions: H py 1-2-3+4 1 functions: H pz 1-2+3-4 Symmetry B1 ( 4) 2 functions: C pz 1 functions: C dxy 2 functions: H s 1-2-3+4 1 functions: H px 1-2+3-4 1 functions: H py 1+2-3-4 1 functions: H pz 1+2+3+4 * Small component functions Symmetry A ( 1) 4 functions: C s 4 functions: C dxx 4 functions: C dyy 4 functions: C dzz 1 functions: C fxyz 1 functions: H s 1+2+3+4 4 functions: H px 1+2-3-4 4 functions: H py 1-2+3-4 4 functions: H pz 1-2-3+4 1 functions: H dxx 1+2+3+4 1 functions: H dxy 1-2-3+4 1 functions: H dxz 1-2+3-4 1 functions: H dyy 1+2+3+4 1 functions: H dyz 1+2-3-4 1 functions: H dzz 1+2+3+4 Symmetry B2 ( 2) 10 functions: C py 4 functions: C dxz 1 functions: C fxxy 1 functions: C fyyy 1 functions: C fyzz 1 functions: H s 1-2+3-4 4 functions: H px 1-2-3+4 4 functions: H py 1+2+3+4 4 functions: H pz 1+2-3-4 1 functions: H dxx 1-2+3-4 1 functions: H dxy 1+2-3-4 1 functions: H dxz 1+2+3+4 1 functions: H dyy 1-2+3-4 1 functions: H dyz 1-2-3+4 1 functions: H dzz 1-2+3-4 Symmetry B3 ( 3) 10 functions: C px 4 functions: C dyz 1 functions: C fxxx 1 functions: C fxyy 1 functions: C fxzz 1 functions: H s 1+2-3-4 4 functions: H px 1+2+3+4 4 functions: H py 1-2-3+4 4 functions: H pz 1-2+3-4 1 functions: H dxx 1+2-3-4 1 functions: H dxy 1-2+3-4 1 functions: H dxz 1-2-3+4 1 functions: H dyy 1+2-3-4 1 functions: H dyz 1+2+3+4 1 functions: H dzz 1+2-3-4 Symmetry B1 ( 4) 10 functions: C pz 4 functions: C dxy 1 functions: C fxxz 1 functions: C fyyz 1 functions: C fzzz 1 functions: H s 1-2-3+4 4 functions: H px 1-2+3-4 4 functions: H py 1+2-3-4 4 functions: H pz 1+2+3+4 1 functions: H dxx 1-2-3+4 1 functions: H dxy 1+2+3+4 1 functions: H dxz 1+2-3-4 1 functions: H dyy 1-2-3+4 1 functions: H dyz 1-2+3-4 1 functions: H dzz 1-2-3+4 *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Dirac-Coulomb Hamiltonian * Kohn-Sham calculation using the xc functional: PBE Weighted mixed functional: PBEx: 1.00000 PBEC: 1.00000 * SS integrals neglected: Interatomic Coulombic SS-contributions modelled by classical repulsion of small component atomic charges using tabulated charges. * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 1 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set - uncontracted small component basis set Information about the restricted kinetic balance scheme: * Default RKB projection: 1: Pre-projection in scalar basis 2: Removal of unphysical solutions (via diagonalization of free particle Hamiltonian) ===== Kohn-Sham calculation set-up ===== * DFT thresholds: - small density threshold = 0.10000E-13 * Spin density contribution in response calculations: - use the norm of the spin magnetization vector as a definition of the spin density (noncollinear definition) ===== Numerical integration grid ===== - radial quadrature according to R. Lindh, P.-Aa. Malmqvist, and L. Gagliardi precision of radial quadrature set to: 0.10000E-12 - angular quadrature using the Lebedev scheme, exact up to order L = 41 ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): DFT Wave function jobs in execution order (expanded): * Density functional calculation (Kohn-Sham method) =========================================================================== *SCF: Set-up for Kohn-Sham calculation: =========================================================================== * Number of fermion irreps: 1 * Closed shell SCF calculation with 10 electrons in 5 orbitals. * Bare nucleus screening correction used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 50 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. SL-integrals from iteration 1 ---> this is default setting from Hamiltonian input ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. *************************************************************************** ***************************** Analysis module ***************************** *************************************************************************** Jobs in this run: * Projection onto another solution =========================================================================== *PROJECT: Projection onto another solution =========================================================================== * Threshold for printing projection coefficients: 1.00D-03 * Number of spinors projected: - Orbitals in fermion ircop E1 : 1.. 5 * Projection analysis based on atomic fragments, calculated in their individual bases AFCXXX 1..5 AFHXXX 1 * Print level: 0 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L A * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.13E-01 L B2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.73E-01 L B3 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.73E-01 L B1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.73E-01 S A * Deleted: 5(Proj: 5, Lindep: 0) Smin: 0.32E-01 S B2 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.67E-02 S B3 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.67E-02 S B1 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.67E-02 Output from MODHAM ------------------ * Applied strict kinetic balance ! SLSORT branch 1... ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** No. of positive energy orbitals (NESH): 34 No. of negative energy orbitals (NPSH): 34 Total no. of orbitals (NORB): 68 ***************************************************************** ********************** Projection analysis ********************** ***************************************************************** Fermion ircop E1 ---------------- * Electronic eigenvalue nr. 1: -9.8841241535435 (Occupation : f = 1.0000) ================================================ Orbital Total Eigenvalue Kramers partner 1 Kramers partner 2 AFCX 1 E 1 0.99996 -0.10660951E+02 (-1.0000,-0.0000) ( 0.0000, 0.0000) AFCX 1 E 2 0.00105 -0.97828487E+00 ( 1.0000,-0.0000) (-0.0000, 0.0000) * Gross contributions: AFCX 1 1.0000 E - 1.0000 P - 0.0000 AFHX 1 0.0000 E - 0.0000 P - 0.0000 AFHX 2 0.0000 E - 0.0000 P - 0.0000 AFHX 3 0.0000 E - 0.0000 P - 0.0000 AFHX 4 0.0000 E - 0.0000 P - 0.0000 Polarization: 0.0000 * Electronic eigenvalue nr. 2: -0.6228438142969 (Occupation : f = 1.0000) ================================================ Orbital Total Eigenvalue Kramers partner 1 Kramers partner 2 AFCX 1 E 1 0.04655 -0.10660951E+02 ( 1.0000,-0.0000) ( 0.0000, 0.0000) AFCX 1 E 2 0.66212 -0.97828487E+00 ( 1.0000, 0.0000) (-0.0000,-0.0000) AFHX 1 E 1 0.13774 -0.23118508E+00 (-1.0000,-0.0000) (-0.0000, 0.0000) AFHX 2 E 1 0.13774 -0.23118508E+00 (-1.0000, 0.0000) ( 0.0000, 0.0000) AFHX 3 E 1 0.13774 -0.23118508E+00 (-1.0000, 0.0000) (-0.0000,-0.0000) AFHX 4 E 1 0.13774 -0.23118508E+00 (-1.0000,-0.0000) ( 0.0000,-0.0000) * Gross contributions: AFCX 1 0.6394 E - 0.6394 P - 0.0000 AFHX 1 0.0861 E - 0.0861 P - 0.0000 AFHX 2 0.0861 E - 0.0861 P - 0.0000 AFHX 3 0.0861 E - 0.0861 P - 0.0000 AFHX 4 0.0861 E - 0.0861 P - 0.0000 Polarization: 0.0162 * Electronic eigenvalue nr. 3: -0.3411330794697 (Occupation : f = 1.0000) ================================================ Orbital Total Eigenvalue Kramers partner 1 Kramers partner 2 AFCX 1 E 3 0.57945 -0.65580719E+00 (-1.0000,-0.0000) (-0.0000,-0.0000) AFHX 1 E 1 0.31559 -0.23118508E+00 ( 0.0000, 0.5774) ( 0.5774, 0.5774) AFHX 2 E 1 0.31559 -0.23118508E+00 ( 0.0000,-0.5774) (-0.5774, 0.5774) AFHX 3 E 1 0.31559 -0.23118508E+00 ( 0.0000,-0.5774) ( 0.5774,-0.5774) AFHX 4 E 1 0.31559 -0.23118508E+00 ( 0.0000, 0.5774) (-0.5774,-0.5774) * Gross contributions: AFCX 1 0.5254 E - 0.5254 P - 0.0000 AFHX 1 0.1165 E - 0.1165 P - 0.0000 AFHX 2 0.1165 E - 0.1165 P - 0.0000 AFHX 3 0.1165 E - 0.1165 P - 0.0000 AFHX 4 0.1165 E - 0.1165 P - 0.0000 Polarization: 0.0085 * Electronic eigenvalue nr. 4: -0.3409855996781 (Occupation : f = 1.0000) ================================================ Orbital Total Eigenvalue Kramers partner 1 Kramers partner 2 AFCX 1 E 4 0.57920 -0.65541464E+00 ( 1.0000,-0.0000) ( 0.0000,-0.0000) AFCX 1 E 5 0.00296 -0.65541464E+00 (-1.0000, 0.0000) ( 0.0000, 0.0000) AFHX 1 E 1 0.31568 -0.23118508E+00 ( 0.0000, 0.8165) (-0.4119,-0.4046) AFHX 2 E 1 0.31568 -0.23118508E+00 ( 0.0000,-0.8165) ( 0.4119,-0.4046) AFHX 3 E 1 0.31568 -0.23118508E+00 ( 0.0000,-0.8165) (-0.4119, 0.4046) AFHX 4 E 1 0.31568 -0.23118508E+00 ( 0.0000, 0.8165) ( 0.4119, 0.4046) * Gross contributions: AFCX 1 0.5251 E - 0.5251 P - 0.0000 AFHX 1 0.1166 E - 0.1166 P - 0.0000 AFHX 2 0.1166 E - 0.1166 P - 0.0000 AFHX 3 0.1166 E - 0.1166 P - 0.0000 AFHX 4 0.1166 E - 0.1166 P - 0.0000 Polarization: 0.0085 * Electronic eigenvalue nr. 5: -0.3409855996754 (Occupation : f = 1.0000) ================================================ Orbital Total Eigenvalue Kramers partner 1 Kramers partner 2 AFCX 1 E 4 0.00296 -0.65541464E+00 ( 1.0000,-0.0000) (-0.0000, 0.0000) AFCX 1 E 5 0.57920 -0.65541464E+00 ( 1.0000,-0.0000) ( 0.0000,-0.0000) AFHX 1 E 1 0.31568 -0.23118508E+00 (-0.0000, 0.0042) ( 0.7050,-0.7092) AFHX 2 E 1 0.31568 -0.23118508E+00 (-0.0000,-0.0042) (-0.7050,-0.7092) AFHX 3 E 1 0.31568 -0.23118508E+00 (-0.0000,-0.0042) ( 0.7050, 0.7092) AFHX 4 E 1 0.31568 -0.23118508E+00 (-0.0000, 0.0042) (-0.7050, 0.7092) * Gross contributions: AFCX 1 0.5251 E - 0.5251 P - 0.0000 AFHX 1 0.1166 E - 0.1166 P - 0.0000 AFHX 2 0.1166 E - 0.1166 P - 0.0000 AFHX 3 0.1166 E - 0.1166 P - 0.0000 AFHX 4 0.1166 E - 0.1166 P - 0.0000 Polarization: 0.0085 ================================================ * Total reference orbital contributions: AFCX 1 E 1 1.99999 -0.10660951E+02 AFCX 1 E 2 1.27874 -0.97828487E+00 AFCX 1 E 3 1.05077 -0.65580719E+00 AFCX 1 E 4 1.05030 -0.65541464E+00 AFCX 1 E 5 1.05030 -0.65541464E+00 AFHX 1 E 1 0.87162 -0.23118508E+00 AFHX 2 E 1 0.87162 -0.23118508E+00 AFHX 3 E 1 0.87162 -0.23118508E+00 AFHX 4 E 1 0.87162 -0.23118508E+00 * Total gross contributions: AFCX 1 6.4301 E - 6.4301 P - 0.0000 AFHX 1 0.8716 E - 0.8716 P - 0.0000 AFHX 2 0.8716 E - 0.8716 P - 0.0000 AFHX 3 0.8716 E - 0.8716 P - 0.0000 AFHX 4 0.8716 E - 0.8716 P - 0.0000 Polarization: 0.0834 ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Wed Apr 27 19:11:35 2016 Host name : lxir072 Dynamical Memory Usage Summary Mean allocation size (Mb) : 122.15 Largest 10 allocations 488.28 Mb at subroutine pamana_+0x78 for WORK in PAMANA 488.28 Mb at subroutine pamset_+0x380 for WORK in PAMSET - 2 488.28 Mb at subroutine gmotra_+0x23c for WORK in GMOTRA 488.28 Mb at subroutine pamset_+0x87 for WORK in PAMSET - 1 488.28 Mb at subroutine MAIN__+0x919 for test allocation of work array in DIRAC mai 0.76 Mb at subroutine paminp_+0x76 for PAMINP WORK array 0.24 Mb at subroutine butobs_no_work_+0x9f for buf in butobs 0.24 Mb at subroutine butobs_no_work_+0x9f for buf in butobs 0.12 Mb at subroutine gtovlx_+0x160 for unnamed variable 0.12 Mb at subroutine gtovlx_+0x160 for unnamed variable Peak memory usage (Mb) : 489.00 reached at subroutine : butobs_no_work_+0x9f for variable : buf in butobs MEMGET high-water mark: 0.00 MB ***************************************************** >>>> Node 0, utime: 0, stime: 0, minflt: 5851, majflt: 97, nvcsw: 313, nivcsw: 43, maxrss: 20172 >>>> Total WALL time used in DIRAC: 0s